
MAR
APR
2017

co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 5
.9

5
 C

an
 $

 8
.9

5
iMessages, F# Type Providers, Swagger, Cordova

Xamarin versus Cordova

Azure Skyline and Docker

Accessing Data with F# Type Providers

Programming
Alexa Skills
for the Amazon
Echo

4 codemag.com

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay US $44.99. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill me option is available only for US subscriptions. Back issues are available. For subscription information, send
e-mail to subscriptions@codemag.com or contact customer service at 832-717-4445 ext 028.

Subscribe online at codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 300, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 300, Spring, TX 77379 U.S.A.

Canadian Subscriptions: Canada Post Agreement Number 7178957. Send change address information and blocks of undeliverable copies to IBC, 7485 Bath Road, Mississauga,
ON L4T 4C1, Canada.

TABLE OF CONTENTS

4 codemag.comTable of Contents

56 How to Know Your Team is Productive and
Delivering Quality
Jeffrey takes a look at the state of the industry and comes up with
some interesting ways to measure efficiency and accuracy.
Jeffrey Palermo

62 Exploring Sticker Packs with iOS 10
Sticker packs and emojis are used by everyone from teenagers
to developers. Jason shows you how these simple tools can be more
than a basic form of communication.
Jason Bender

66 Azure Skyline: Building and Deploying Services to
Azure with .NET Core and Docker
Today’s devs have to be nimble. Your app has to work on a multitude
of platforms and meet any number of platform-specific demands.
Mike explains how a new tool called Docker can help you deploy
your apps on everything from Linux to .NET and leave you hardly
breaking a sweat.
Mike Yeager

Columns
74 Managed Coder: On Coding Management

Ted Neward

Departments
6 Editorial

11 Advertisers Index

73 Code Compilers

Features
8 Data-Driven Testing with Visual Studio

Does the idea of using an app that’s never been tested give you the willies?
It should, and Paul talks about finding the sticking points so you can be
confident that your code works as intended before someone fires it up.
Paul Sheriff

14 Xamarin versus Cordova
These days, you can’t target only one platform with your innovative apps.
They have to look good on many types of devices and operating systems.
Sahil looks at how Xamarin and Cordova translate into native apps and
how you can use a combination to build even more versatile systems
than ever before.
Sahil Malik

20 Legal Notes: Selecting and Operating a Legal
Entity for Your User Group
Your user group has some serious experts in it and it’s time to share
the knowledge. If your group wants to host conferences, offer classes,
or even go into business, you’ll want John’s advice about what you need
to start the process.
John Petersen

22 Programming Alexa Skills for the Amazon Echo
If you’re looking for a way to computerize your home or add voice controls
to your apps, you’re interested in what’s happening with Amazon Echo.
Chris introduces you to some basic programming skills for the device and
points the way to greatness.
Chris Williams

38 Creating iMessages Apps
Did you ever think you’d be programming apps without code?
Mohammad show you how, using Apple’s iMessages framework,
iOS 10, a little bit of Swift, and some Sticker Packs.
Mohammad Azam

48 Accessing Your Data with F# Type Providers
You can access just about any data with type providers, whether in XML,
JSON, or APIs. Rachel shows us how, plus a nifty new Swagger type provider.
Rachel Reese

6 codemag.com

ONLINE QUICK ID 00

Whether you rush to add those features or not,
it’s important to consider that your tester (edi-
tor) won’t be the only person to have those
thoughts. They’re merely the first. You need to
consider the cost of delivering something that
might easily be seen as incomplete, even if you
disagree.

I’ve seen more unpolished text than software as
an editor, but it works the same way. If you’re
writing the help files or UI, or even a nice article,
it’s important that your first reader understands
exactly what you mean. Instructions are not the
time to get fancy or play with hyperbole or other
literary devices. Oh, you’re welcome to be humor-
ous, clever, or even charming (if you are those
things), but not to the point that the reader
thinks about YOU rather than the product.

A good tester or editor will know what you meant
and be able to help you produce the result that
you had in mind. You might even be a pretty
good tester or editor yourself. But there’s a dan-
ger in thinking that you can be your own tester
or editor. You know that old adage, “The lawyer
who represents himself has a fool for a client,”
right?

A good dev or writer can certainly make a decent
pass at his own work, tweaking here and tidy-
ing there. And that should happen, every time,
whether you’re writing code or text. But it’s a
very bad idea to deliver a product that only you
have tested or edited.

It’s the weird interpretations other people make
that allow those flashes of inspiration and insight
and make your work better. That’s how you grow.
You’ll never be finished growing if you’re good at
what you do.

Post Script: One of my editor friends suggested a
Dr. Dobb’s Journal frequent blogger’s posts about
testing. The Dr. Dobb’s site went dark in 2014,
but the articles, and many new ones by Michael
Hunter, are available here: http://www.thebraidy
tester.com/. I’ve got more than a hundred articles
on writing for technical people on my website, at
www.MelanieSpiller.com.

Editorial

whether it’s the software, the device, or the words.
Not only will your product (or article, etc.) be bet-
ter, but you’ll grow, too.

Editing text is different from testing software, but
it’s the same principle. You want users to effort-
lessly read the words and use the product. You need
to know if the dialog box you see as the gateway to
your product contains a mystifying set of text boxes
or if the search function produces random results.
You don’t want people to struggle to use your prod-
uct; you want a clear flow of information or func-
tion, and clear help files in case they get stuck.

I once worked at ZD Labs, which supported all 12
of Ziff-Davis Publishing’s tech magazines. Our group
took hardware and software and did our best to
break it. We built devices that held laptops pre-
cariously over various surfaces and dropped them
repeatedly from a specific and controlled height.
We wired keyboards and spilled various substances
(soda, water, coffee, etc.) on them until they failed,
and measured how much electricity zapped the key-
board and whether it went with a whimper or a bang.
We did the opposite of what every well-intentioned
instruction told us to do. We had a Faraday Cage to
deliberately electrocute computers and a completely
soundproof room where we could measure how loud
that fan keeping your hard drive cool really was or
how much noise a room full of mainframes made. In
short, we had a whole lot of fun.

The object wasn’t really to have fun but to use the
product in the worst possible way in a controlled
environment so that the various tragedies could be
measured. We barely read, entirely skipped, or ob-
stinately misinterpreted instructions. We researched
statistics—how many seated users knocked a laptop
off their laps or dropped one while running through
an airport. We even had a rubber finger on a stick
that poked the same ke, around the clock for weeks
on end until the key broke.

We studied whether a non-technical person could
figure out how to use a piece of software. To per-
form such a test, I built a database using FoxPro
that tracked the timecards and contract lengths
for ZD Labs’ team of freelancers. I enjoyed it
enough that I next volunteered to build a much
more involved database using an Oracle product
(with a lot of help) to set up a software and lit-
erature library at the lab.

You’re Not Finished Yet
I’ve edited a whole lot of books, articles, help files, websites, and white papers about technology. I’ve
seen countless products come and go and I’ve been on plenty of teams building apps or software. At the
end of the day, there’s one thing I’m sure of: Everything needs to be tested before it’s sent out the door,

EDITORIAL

6

The whole reason for ZD Labs’ existence was to
find out whether products kept the promises on
their boxes, and to see if a reasonable amount of
use or abuse might break them. We set benchmarks
to compare similar products or functions, and we
brought in freelancers with widely varied skill sets to
see how much knowledge was needed to succeed—
or fail. Our purpose wasn’t to help the manufactur-
ers, although that was probably a result. We were
trying to inform magazine readers so they could
make intelligent purchases and use the products in
an advantageous way.

No matter how brilliant you are as a software de-
signer, you need someone to be your first user who
can provide the kind of feedback that helps you de-
liver a great product before it goes public. It’s the
same if you’re writing about technology or providing
the supporting documents that ship with the prod-
uct. You can use (or reread) your work again and
again, but you still know what the original intention
was, and logical lapses won’t jump out at you the
way they would to someone who’s not using your
brain. You need someone to intentionally break your
product and then give you feedback.

What if your first user (or editor) has different taste
or disagrees with your design? What if they don’t
understand your goal, or worse, what if they inject
their own ideas into your work? That’s the second
half of having your work tested or edited. As impor-
tant as it is to get feedback, it’s just as important to
know how to respond to it.

Let’s say that you build an app that measures hik-
ing paths. You track whether the paths are also
suitable for horses, bicycles, or small motor vehi-
cles, you’ve got elevation change, and you track
distance and give a letter grade for difficulty.
Your beta user wants a bigger picture—parking
availability, running and hiking clubs that use
the park, handicapped access, bathroom and wa-
ter availability, and so forth.

Those are good ideas, of course, but perhaps that’s
not the app you’re building. Or perhaps those are on
the wish list (backlog) for V2, but you’ve got a dead-
line to meet. It’s your job to figure out whether the
app’s users need those things or whether they’re
just bells and whistles. You might have to do a cost
analysis to make this decision or maybe you already
know the right thing to do.

 Melanie Spiller

8 codemag.comData-Driven Testing with Visual Studio

ONLINE QUICK ID 1703021

Data-Driven Testing with Visual Studio
Every developer needs to test their own code or have it tested by someone else. Many developers aren’t great at testing their
own work. The main reason is that we tend to test only the “happy path” through the functionality that we wrote. We often
avoid testing the boundaries of our code, such as invalid inputs, exceptions that might occur, etc. One way to become a better

tester is to start writing unit tests. Although it takes
more time up-front to write unit tests, it saves a ton of
time if you have to regress test changes to existing fea-
tures.

Starting with Visual Studio 2008, Microsoft added a
unit testing framework into Visual Studio. One of the
great features of the unit testing tools in Visual Stu-
dio is the ability to use a data-driven approach. There
are also several third-party testing frameworks you can
use. In this article, you’ll to learn to retrieve values
to be used for testing from SQL Server. Using a data-
driven approach can significantly reduce the unit tests
you must write.

Why You Should Test Your Code
We all know that we need to test code prior to putting it
into production. Testing ensures that the code you write
works as expected. It’s not enough to check that it works
as expected, but you must also check it under varying cir-
cumstances and with different inputs. For example, what
if someone takes the database offline? Will your code
recover gracefully from this exception? Does your code
inform the user that there’s a problem with the database
connection in a friendly and easily understood manner?
All of these questions need to be answered in the testing
of your code. You need to simulate these conditions so
you can test your exception code.

Performing the act of testing often helps you improve
the quality of your code. As you think about the various
scenarios that can go wrong, you start to add additional
code to handle these scenarios. This leads to your code
being more robust and ultimately more maintainable and
user-friendly. You’ll find that taking time to test your
code will make you a better programmer in the long run.
Your boss and your end-users will appreciate the extra
effort as well.

Automated Testing
Instead of you or a QA person doing all the testing, try to
automate as much as possible, called unit testing. Unit
testing means that you write a program, or more likely, a
series of programs, to test each line of code and ensure
that it operates properly under all circumstances. Unit
testing has become very prevalent in today’s professional
software shops.

Although this sounds like a lot of work, and it is more
work up front, you’ll more than make up that time by
avoiding multiple regression tests that have to be done
by a human. You can even automate the set-up and tear-
down of databases, files, etc. With the correct architec-
ture, you can automate almost all of the various inputs a
human tester would have to enter by hand.

You also save the time that you normally eat up when you
do your own testing by pressing F5 to start debugging in
Visual Studio, waiting for the compile process, and click-
ing through a half dozen menus to finally get to the point
where you want to start testing. As you know, this can
sometimes take 15 seconds to a minute, depending on
how large your application is. By unit testing instead,
you can run many tests in just a couple of seconds. This
adds up to saving many hours over your complete devel-
opment cycle.

Automated tests are repeatable, unlike tests run by hu-
mans who might forget to test something. You end up
with more of your code tested because things won’t be
forgotten. Because you’re forced to think of how to test
your code while you’re writing it, you write better code.
You also save time on the set-up and the tear down of
the tests because these tasks can also be automated. As
you can see, there are many advantages to an automated
approach over human testing.

Of course, there are disadvantages to the automated ap-
proach as well. First, it does take more time up-front to
develop these tests. Automated tests are only as good as
the person who develops the tests. The tools to test user
interfaces are not always great, and they require that you
purchase third-party testing tools. Then again, if you’re
using good n-tier techniques, MVC, MVP, MVVM, or similar
design patterns, there should be very little UI for you to
test anyway.

The FileExists Method
For this article, you’re going to build a method that
checks to see whether a file exists. You’re then going to
build unit tests to check each type of input that you can
pass to this method. Next, you’re going to replace all of
those unit tests with a single unit test that retrieves the
various inputs from a database table.

To start, create a new Class Library project in Visual
Studio using C#. Set the name of this class library
project to MyClasses. Rename the Class1.cs file created
by Visual Studio to FileProcess. Add a method in this
class called FileExists, as shown in the following code
snippet:

public bool FileExists(string fileName) {
 if (string.IsNullOrEmpty(fileName)) {
 throw new ArgumentNullException("fileName");
 }

 return File.Exists(fileName);
}

This is a very simple method, yet it requires at least three
unit test methods to ensure that this method works with

Paul D. Sheriff
http://www.pdsa.com

Paul D. Sheriff is the President of
PDSA, Inc. PDSA develops custom
business applications specializing
in Web and mobile technolo-
gies. PDSA, founded in 1991, has
successfully delivered advanced
custom application software to
a wide range of customers and
diverse industries. With a team of
dedicated experts, PDSA delivers
cost-effective solutions, on-time
and on-budget, using innovative
tools and processes to better
manage today’s complex and
competitive environment.
Paul is also a Pluralsight author.
Check out his videos at
http://www.pluralsight.com/
author/paul-sheriff.

9codemag.com Data-Driven Testing with Visual Studio

in a null value or a blank value to the FileExists method.
An ArgumentNullException is thrown from the FileExists
method if a null or blank value is passed to the method.
There are two ways to handle this thrown exception.
First, add an ExpectedException attribute after the Test-
Method attribute on the method, as shown in the follow-
ing code snippet.

[TestMethod]
[ExpectedException(typeof(ArgumentNullException))]
public void FileExistsTestNullWithAttribute() {
 FileProcess fp = new FileProcess();

 fp.FileExists("");
}

The second way to handle this exception is to wrap up the
call to the FileExists method within a try…catch block.
The catch block should check to see if the exception is
an ArgumentNullException. If it is, don’t do anything to
tell the unit test framework that this test succeeded. If
no exception is thrown, there’s something wrong with
the logic and you should call the Assert.Fail() method
to signal to the unit test framework that this test failed.
Let’s use this second method because this is what you’ll
do when you go to a data-driven approach.

all possible inputs. The three possible values you can
pass to the fileName parameter are:

• A file name that exists
• A file name that does not exist
• A null or empty string

Create a Test Project
Right-mouse click on your MyClasses solution and choose
Add -> New Project. From the list of templates, click on
the Visual C# -> Test -> Unit Test Project. Set the Name
to MyClassesTest. Click the OK button. Rename the Unit-
Test1.cs file to FileProcessTest.cs. You’re going to test
the method in your MyClasses class library, so you need
to add a reference to that project. Right-mouse click on
the References folder in the MyClassesTest project and
select MyClasses. Add the following using statement at
the top of the FileProcessTest.cs file.

using MyClasses;

It’s now time to start writing the unit tests to create each
of the three possible inputs identified for this method.
The first one is to test that a file exists. Add the code
shown below to the FileProcessTest class. Feel free to
change the drive letter, path, and file name to a file that
exists on your computer.

[TestMethod]
public void FileExistsTestTrue() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 fromCall =
 fp.FileExists(@"C:\Windows\Regedit.exe");

 Assert.AreEqual(true, fromCall);
}

After adding this code, right-mouse click in your code
window and choose Run Tests from the context-sensitive
menu that appears. After the code runs, a Test Explorer
window appears with the results of the test. If the file
exists, the window should display something that looks
like Figure 1.

The next method to write tests for a file that doesn’t ex-
ist. Create a method in your FileProcessTest class to test
this condition. Write the code shown in the following
code snippet.

[TestMethod]
public void FileExistsTestFalse() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 fromCall =
 fp.FileExists(@"C:\BadFileName.txt");

 Assert.AreEqual(false, fromCall);
}

Once again, run these tests and you should now see two
passed tests in your Test Explorer window. Add the fi-
nal test to the FileProcessTest class to test if you pass Figure 1: Test results appear in the Test Explorer window.

10 codemag.comData-Driven Testing with Visual Studio

4. Add a DataSource attribute to your test method.
5. Add a config file to hold a connection string and

table name to use.

Create a Table to Hold Test Data
Because you created three test methods, you’re going to
need a table with three rows, one for each test. Each test
passes one value, and returns a Boolean value, so the
table needs at least two fields: FileName and ReturnVal-
ue. Add one more column named CausesException that
you can set to a true or false value on whether you are
expecting an exception to be thrown by the method you
are testing. Create this table in a database with the script
shown in Listing 1.

The data in this table that was created from the script
matches the hard-coded values in the three-unit test
methods. Table 1 shows the values that are now in your
table. Feel free to use any specific file names and return
values that make sense for your computer.

Add Properties and References
When the unit test framework creates an instance of a
test class (a class marked with a [TestClases] attribute),
it creates a TestContext object. This object contains
properties and methods related to testing. One of the
properties stores the data source information to allow
you to access each row in the table you specify for the
test. To access this TestContext object, you must cre-
ate a property named TestContext in each of your test
classes.

private TestContext _TestInstance;
public TestContext TestContext
{
 get { return _TestInstance; }
 set { _TestInstance = value; }
}

A DataTable is created from the table you create and a
DataRow property is exposed on your TestContext prop-
erty. In order to use this property, you must add a refer-
ence to the System.Data.dll. Go ahead and right-mouse
click on your test project’s References folder and select
Add Reference… from the menu. Then select Assemblies
-> Framework, locate the System.Data assembly, and
add it to your project.

Create Data-Driven Test Method
Add a new method to your FileProcessTest class that looks
like the following code snippet. Don’t split the connec-
tion string across multiple lines, though; I had to format
it to fit within the column width of this article. You also
need to modify the name of your server and the database
in which you created the FileProcessTest table.

[TestMethod()]
[DataSource("System.Data.SqlClient",
 "Server=Localhost;
 Database=Sandbox;
 Integrated Security=SSPI",
 "tests.FileProcessTest",
 DataAccessMethod.Sequential)]
public void FileExistsTestFromDB() {

}

[TestMethod]
public void FileExistsTestNull() {
 FileProcess fp = new FileProcess();

 try {
 fp.FileExists("");
 Assert.Fail();
 }
 catch (ArgumentNullException) {
 // The test succeeded
 }
}

Run the unit tests one more time, and you should now
see three passed tests in the Test Explorer window. Us-
ing this approach to testing means that you need to cre-
ate different methods for each individual file and return
value combination that you wish to test. Extrapolate
this to a method that has several parameters, multiple
If statements or Switch statements, and you can see how
the number of methods you must write can grow substan-
tially. This is where a data-driven approach to passing
parameters to your methods reduces the amount of test
methods you need to create.

Create a Data-Driven Test
Now that you have a table, let’s create a test method
that can be fed data from the FileProcessTest table you
created previously. There are a few steps to get the data-
driven test working.

1. Create a table to hold parameter data.
2. Add a reference to System.Data to your test project.
3. Add a TestContext property to your test class.

CREATE SCHEMA tests
GO

CREATE TABLE tests.FileProcessTest
(
 FileName varchar(255) NULL,
 ExpectedValue [bit] NOT NULL,
 CausesException [bit] NOT NULL
)
GO

INSERT INTO tests.FileProcessTest
VALUES ('D:\Exists.txt', 1, 0);

INSERT INTO tests.FileProcessTest
VALUES ('D:\NotExists.txt', 0, 0);

INSERT INTO tests.FileProcessTest
VALUES (null, 0, 1);

Listing 1: Create a table to hold test values

FileName ReturnValue CausesException
C:\Windows\Regedit.exe true false

C:\NotExists.xls false false

NULL false true

Table 1: Data for the FileProcessTest table

11codemag.com Data-Driven Testing with Visual Studio

method. You now retrieve the appropriate columns you
need for your test within your method. Listing 2 shows
the complete code for the FileExistsTestFromDB() method.

In the FileExistsTestFromDB method, you retrieve the val-
ues from the column using standard ADO.NET syntax. The
next code snippet shows retrieving each of the columns
you created in the table.

fileName = TestContext.DataRow["FileName"]
 .ToString();

Besides the [TestMethod] attribute, this method has a
new attribute called [DataSource]. This attribute allows
you to specify a data provider, a connection string, the
name of the table in the data source, and how to loop
through the records in the table.

The unit testing framework uses the information passed
to the DataSource attribute to build a DataTable of the
rows within the table specified in the DataSource. The
framework begins looping through each row and for each
row, sets the DataRow property and then calls your test

MAR
APR
2017

co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 5
.9

5
 C

an
 $

 8
.9

5

iMessages, F# Type Providers, Swagger, Cordova

Xamarin versus Cordova

Azure Skyline and Docker

Accessing Data with F# Type Providers

Programming
Alexa Skills
for the Amazon
Echo

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 026
tammy@codemag.com

1&1 Internet, Inc.
 www.1and1.com 7

AnDevCon
 www.andevcon.com 67

CODE Consulting
 www.codemag.com/techhelp 2, 37

CODE Divisions
 www.codemag.com 76

CODE Framework
 www.codemag.com/framework 41

CODE Magazine
 www.codemag.com/magazine 45

CODE Staffing
 www.codemag.com/staffing 61

DevTeach Developers Conference
 www.devteach.com 13

dtSearch
 www.dtSearch.com 47

LEAD Technologies
 www.leadtools.com 5

Tower48
 www.tower48.com 75

Xamalot
 www.xamalot.com 71

Advertisers Index

This listing is provided as a courtesy to
our readers and advertisers.
The publisher assumes no responsibility
for errors or omissions.

ADVERTISERS INDEX

[TestMethod()]
[DataSource("System.Data.SqlClient",
 "Server=Localhost;
 Database=Sandbox;
 Integrated Security=SSPI",
 "tests.FileProcessTest",
 DataAccessMethod.Sequential)]
public void FileExistsTestFromDB() {
 FileProcess fp = new FileProcess();
 string fileName;
 bool returnValue;
 bool causesException;
 bool fromCall;

 // Get values from data row
 fileName = TestContext.DataRow["FileName"]
 .ToString();
 returnValue = Convert.ToBoolean(
 TestContext.DataRow["ReturnValue"]);
 causesException = Convert.ToBoolean(
 TestContext.DataRow["CausesException"]);

 // Make call to Method
 fromCall = fp.FileExists(fileName);

 // Check assertion
 try {
 Assert.AreEqual(returnValue, fromCall,
 "File Name: " + fileName +
 " has failed it's existence test in test:
 FileExistsTestFromDB()");
 }
 catch (AssertFailedException ex) {
 // Rethrow assertion
 throw ex;
 }
 catch (Exception) {
 // See if method was expected
 // to throw an exception
 Assert.IsTrue(causesException);
 }
}

Listing 2: A data-driven test method

12 codemag.comData-Driven Testing with Visual Studio

Sample Code

You can download the sample
code for this article by
visiting my website at
http://www.pdsa.com/downloads.
Select PDSA Articles, and then
select “Code Magazine—
Data-Driven Testing” from
the drop-down list.

name attribute within the <dataSources> collection. You
may have as many different data sources as needed by
your tests.

[TestMethod()]
[DataSource("Sandbox")]
public void FileExistsTestFromDB()
{
 ...
}

You should now be able to run your three unit tests from
the information contained in your data table. Comment
out the original tests you wrote in this article so the only
test method left is the one with the DataSource attri-
bute. Run the tests to ensure that you have everything
configured correctly.

Architect Your Code for Testing
Correctly architecting an application will do wonders for
re-usability, readability, upgradeability, maintainability,
and testability. Take advantage of the design patterns
that exist today, such as MVC, MVP, MVVM, or derivatives
thereof. All of these patterns help you remove code from
the user interface layer of your application. Removing
code from the UI layer is the single best thing you can
do to have a well architected, easily testable application.

Your UI code should strive to just call or bind to proper-
ties and methods in classes. Each class you write should
contain all of the logic for your application. By moving
all application logic out of the UI and into classes, you
make it easy to use the various unit testing tools in Visual
Studio. Furthermore, these classes should be combined
into assemblies to aid not only in testing, but also in
re-usability.

Summary
If you find that you’re writing many different unit tests to
test a single method that has a lot of inputs and outputs,
the data-driven approach outlined in this article may be
just what you are looking for. I recommend using a sepa-
rate database for all your test tables. I also like creating
a schema with the name of “tests,” as I did in this article.
Be sure to put all of your connection strings and data
source names in an App.config file for the ultimate in
flexibility. Good luck with your testing!

returnValue = Convert.ToBoolean(
 TestContext.DataRow["ReturnValue"]);
causesException = Convert.ToBoolean(
 TestContext.DataRow["CausesException"]);

After retrieving the values, you now call the Assert.Are-
Equal() method to compare the return value for the cur-
rent row with the value returned from calling the FileEx-
ists() method, passing in the file name retrieved from the
current row. If an exception occurs, it could be caused by
two reasons. The first is that the Assert.AreEqual meth-
od raises an exception of the type AssertFailedException
to inform the unit testing framework that this test failed.
The second reason is that the FileExists method raises an
exception in response to a bad file name being passed in.
If this latter situation is the case, you need to check the
value you retrieved from the column CausesException in
the current row. If it’s a true value, the test succeeded;
otherwise, the Assert.IsTrue causes an exception of the
type AssertFailedException, which again, informs the
unit test framework that the test failed.

Move the Connection String to a Config File
Just like any other class, a test class like FileProcessTest
should follow the same best practices you would normally
employ for your application code. In the DataSource at-
tribute in Listing 2, there’s a hard-coded connection
string and table name. This information is best put into
a configuration file to make it easy to change. Microsoft
gave us the flexibility to accomplish this. Create an App.
config file in the test project and add the items within
the <configuration> section shown in Listing 3. NOTE:
The type= attribute should all be on one line. It is broken
into multiple lines to format for this article.

Once this configuration file has been created, modify
the DataSource on your FileExistsTestFromDB meth-
od to look like that shown in the code snippet below.
The DataSource attribute is now a simple reference to the

<configSections>
 <section name="microsoft.visualstudio.testtools"
 type="Microsoft.VisualStudio.TestTools.
 UnitTesting.TestConfigurationSection,
 Microsoft.VisualStudio.
 QualityTools.UnitTestFramework"/>
</configSections>

<connectionStrings>
 <add name="Sandbox"
 connectionString="Server=Localhost;
 Database=Sandbox;
 Integrated Security=SSPI"
 providerName="System.Data.SqlClient" />
</connectionStrings>

<microsoft.visualstudio.testtools>
 <dataSources>
 <add name="Sandbox"
 connectionString="Sandbox"
 dataTableName="tests.FileProcessTest"
 dataAccessMethod="Sequential"/>
 </dataSources>
</microsoft.visualstudio.testtools>

Listing 3: Create a config file to hold the test data source information

Removing code from
the UI layer is the single best
thing you can do to have
a well architected, easily
testable application.

 Paul D. Sheriff

13Title articlecodemag.com

14 codemag.comXamarin versus Cordova

ONLINE QUICK ID 1703031

Xamarin versus Cordova
Fifteen years ago, launching a product meant writing a Windows application. Ten years ago, it meant writing a website
that worked on Internet Explorer. Today, launching a successful product means targeting Mac and Windows, and iOS and
Android. And it may also mean targeting tvOS, WatchOS, Tizen, XBOX, Windows Phone, maybe more. It’s mind boggling

how much times have changed. In previous articles, I’ve
made the case for looking at Angular2 and Typescript,
along with Cordova and Electron as a strategy to lower
the learning curve and associated costs in targeting mul-
tiple platforms. Yes! It’s true: write once, run everywhere
is finally a reality. You can’t target all relevant platforms
with a single codebase, and the application looks good,
looks consistent, and performs quite well.

But a few years ago, targeting multiple platforms effectively
meant that you had to write code for each platform sepa-
rately. In other words, you wrote “native” code, and didn’t
use Web-based technologies. The argument in favor of na-
tive is that it provides better performance and better access
to leading-edge features on the respective platforms.

But writing native has two huge disadvantages: a much
higher learning curve and associated costs.

What if you could have the best of both worlds? Write
in C# and run everywhere as native applications. That’s
the value of Xamarin. Xamarin, now part of Microsoft, is
an incredible alternative that lets you use one language
and one code base and target multiple platforms. So why
would you not just use Xamarin, always?

Always! You’ll never hear a good developer use that
word, although I sometimes run into naysayers. They in-
sist that if you aren’t doing 100% native, you’re doing
it wrong. There’s an almost religious war between these
two camps. The reality is that good developers take ad-
vantage of both platforms where suitable.

In this article, I intend to make the case that it is pos-
sible to build your mobile app using the best of each
technology. Although Xamarin is great, it has its foibles.
Although Cordova is great, it too has foibles. Sometimes
mixing the two together gives you the best possible re-
sults. I intend to make this case with a sample applica-
tion written in both Cordova and Xamarin. This sample
application has one simple task: to send substantial
amounts of data back to the server.

Strengths and Weaknesses
This is perhaps the hardest section to write in this ar-
ticle; I’m presenting strengths and weaknesses on a topic
fraught with religiously held opinions and all without
proof. Please humor me, as this section is the opinion of
one person. The proof is coming shortly.

Vendor Native
By vendor native, I mean Swift or ObjectiveC for iOS and
MacOS, Java for Android, and C# and XAML for Windows.
The advantage here is best-of-breed performance, the
smallest binaries, and the best support from the associ-
ated vendor. The disadvantage is having to learn three

different platforms, maintain three code bases, and fix
the same bug three times, with bonus bugs on top. This
approach is expensive.

Xamarin
Using Xamarin means that you write your code in C# but it
compiles down to native. The disadvantage is that you’ll
have a more complex project structure, a more complex
dev environment—especially when you need to target iOS
from Windows—and performance, though good, is not as
good as pure native. Binary sizes are decent, but they’re
usually larger than pure native.

Also, although it’s not technically a disadvantage, it’s a
fallacy to assume that you won’t have to learn the plat-
form intricacies just because you are using C#. The real-
ity is that you still need to understand platform-specific
details such as keychain stores, app bundle identifiers,
provisioning profiles, and a lot more that comes with any
associated platform. Frankly, sometimes the only differ-
ence between writing an iOS app using Xamarin and C#
and using XCode and ObjectiveC feels like the language.
In fact, for 90% of the time I’m stuck on a Xamarin is-
sue, I run a search on the Internet and find an Objec-
tiveC solution; my workflow is a bit like Google -> copy/
paste -> translate ObjectiveC to C#. The language, for the
most part, feels like the only major difference. Mind you,
that‘s not a small difference! ObjectiveC is a language
only a mother could love. (Swift is not so bad.)

Xamarin Forms
This section will probably get me in the most trouble, but
it deserves to be called out. Xamarin forms, in my opin-
ion, have some major disadvantages. XAML (and for that
matter even vendor-native controls) are okay at building
a UI quickly. However, a significantly branded app is al-
most never easy to build using XAML.

I realize that there are some XAML experts who’ve already
pulled out their pitchforks. But when it comes to pure de-
veloper productivity when comparing HTML5/CSS3 versus
XAML, HTML wins hands down. I agree that XAML gives
you more fine-tuned control, but HTML adapts better to
“reflow” and multiple form factors. The whole issue I’m
trying to solve here is maximum reach with minimum ef-
fort and cost. On that front, writing up an HTML-based
UI is almost always a better choice than trying to do the
same thing in XAML or dragging-and-dropping a button
and then trying to make that button style completely not
like a button. Nobody wants a boring UI, and it might
take some real effort to make this button interesting.

The other disadvantage of Xamarin forms is bloat. This
productivity abstraction layer creates larger binaries,
which, in turn, can affect performance and load times.
There are some solutions to this in the linking process,
however.

Name Autor
www.internet.com

asdfasdfasdfasdfker, a .NET
author, consultant and trainer.

Sahilasfasdfasdfasdfasdfasdfd-
fainings are full of humor and
practical nuggets. You can find
more about his trainings at
http://wwasdfasdfasfasdfasdf

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft MVP,
INETA speaker, a .NET author,
consultant, and trainer.

Sahil loves interacting with
fellow geeks in real time. His
talks and trainings are full of
humor and practical nug-
gets. You can find more about
his training at http://www.
winsmarts.com/training.aspx.

His areas of expertise are
cross-platform mobile app de-
velopment, Microsoft anything,
and security and identity.

15codemag.com Xamarin versus Cordova

That’s the number one target you need to address: where
you marshal across JavaScript to a native boundary re-
peatedly over thousands of times, a Cordova operation
could amount to delays measurable in seconds, if not
worse. This is something that the user will notice.

The other situation you need to consider are specific UI
elements, such as scrolling list views with large amounts
of data, or map applications with pan and zoom elements
that have very large images; the sorts of things that could
be done in HTML but are done better in native. The good
news is that Cordova applications let you replace one
screen with native implementation, one UI element with
native implementation, or they simply ditch the whole Cor-
dova shell and still use the same concept to write hybrid
apps in either vendor native, or using Xamarin.

The Important Take-Away
The important take-away here is that every technology
has its strengths and weaknesses. And the mobile ap-
plication development landscape is changing rapidly, so
what’s true today in this article may change a year from
now. I feel that crafting up your UX in HTML is a very vi-
able approach, as long as you know when to drop HTML
and JavaScript and dive into native code.

You’ve probably heard that dropping into Native code is
expensive, and that you have to write it three times in
three different platforms. It’s not the case! This is where
Xamarin comes into the picture. You write your code
once, as a combination of C#/Xamarin, and HTML, CSS,
and JavaScript.

With judicious mix-and-match, you now have the perfor-
mance of native and the flexibility of HTML, all with a
single code base. Simply amazing!

Finally, Xamarin forms is newer than Xamarin itself, so a
lot of things you want in a full UX control set are missing.
This is a problem that I’m sure will get fixed in due time.

I’m not saying that Xamarin forms are never suitable. If you
want a user interface that can be built nicely with drag-
and-drop controls with some basic positioning, that doesn’t
target too many form factors, and isn’t heavily branded, it
might be okay! In enterprise dev scenarios, sometimes cre-
ating numerous functional apps quickly matters more than
creating the best-looking apps. But for the typical mobile
app that needs ooohs and aaahs, I find that Xamarin Forms
are not the easiest route to success, at least not today.

Cordova and Web technologies
The biggest advantage of using Cordova is that these
skills are the easiest to find and learn. Also, good-look-
ing user interfaces built using HTML-based technologies
can run everywhere, and can be built by people who
aren’t experts at XCode, Storyboards, or XAML. You can
split the problem into smaller manageable chunks and
cut your work according to your people, not the other
way around. Also, with Angular and Typescript, it’s pos-
sible, in a practical manner, to write code for mobile and
have it run on desktop, and vice versa.

The biggest disadvantage here is performance. But
let’s dissect this further. Performance, although impor-
tant, isn’t everything. Rather, let’s put it this way: your
team’s performance is important too. For instance, let’s
talk about HTML’s biggest advantage: a cross-platform,
responsive user interface that‘s attractive and easy to
build.

It’s true that pressing an HTML div that’s disguised as a
button may take five milliseconds more than, say, a pure
native button. But the important take-away here is that
the user’s not going to care about or even notice five
milliseconds. Of course, if you did a button press 100,000
times in a loop, those five milliseconds add up to some-
thing substantial, and then the user will notice and care.

JavaScript engines have gotten pretty good. Your regular
business logic, such as those that enable a textbox when
the checkbox is checked, etc., run pretty much as fast as
native. Where you pay a huge penalty is when you start
marshalling between JavaScript to native and vice versa.
Especially when you start marshalling in a loop.

public class TestController : ApiController
{
 public void SubmitData(string inputData)
 {
 System.Diagnostics.Debug.WriteLine(inputData);
 }
}

Listing 1: A very simple Web API

sendData:function() {
 var now = window.performance.now();
 var deferreds = [];
 var i = 1;
 for (i = 1; i <= 10000; i++) {
 deferreds.push(sendDataChunk());
 }
 var then = window.performance.now();
 document.getElementById(
 "sendDataButtonLog").innerHTML =
 "Total time (ms): " + (then - now);

 $.when.apply($, deferreds).done(function() {
 // you can check for total time
 // for request to complete here.

 });
 function sendDataChunk() {
 var deferred = new $.Deferred();
 var postUrl = "..removed..";
 $.ajax({
 type: "POST",
 url: postUrl,
 success: function() {
 deferred.resolve();
 }
 });
 return deferred;
 }
}

Listing 2: The sendData function

SPONSORED SIDEBAR:

Need Help?

Looking to convert your
application to a new
language, or need help
optimizing your existing
application? The experts at
CODE Consulting are here
to help with your project
needs. From desktop to
mobile applications, CODE
developers have a plethora
of experience in developing
software and programs for
different platforms.
For more information visit
www.codemag.com/consulting
or email us at info@codemag.com

16 codemag.comXamarin versus Cordova

better. You don’t want network traffic or other such extra-
neous factors to affect this measurement.

The Cordova App
I’m going to skip over Cordova basics here and just talk
of the main steps I took to create the app.

I first created a basic Cordova project and then added jQuery
into it. I cleaned up the user interface to remove that de-
vice-ready message that the starter Cordova app shows, and
instead added a button and a div, as shown in this snippet:

<div id="deviceready">

 <button id="sendDataButton">
 Send Lots of Data</button>
 <div id="sendDataButtonLog"></div>
</div>

Also, because I intend to make HTTP calls from the ap-
plication, I added the following to the “Content-Security-
Policy” meta tag:

;connect-src http://*/*

Note that the above is very insecure: it allows calls to any
HTTP URL. It’s okay for testing purposes.

Next, let’s modify the JavaScript portion of the code. The
idea is that when the sendDataButton is clicked, you
wish to fire off 10,000 POST requests and measure how
long it took to send those requests. You don’t care about
how long it takes for those requests to return.

The App
I’m going to illustrate my argument here by building an
app that posts data to a Web API written in ASP.NET. To
keep things germane, I’m keeping the WebAPI extremely
simple. There’s no authentication and there’s no complex
payload. It’s just a simple action that accepts a string on
HTTP POST. This reflects a real-world scenario, where the
app has a large payload to post. The app isn’t going to post
that entire payload in one request. This not only has memo-
ry implications on the mobile device, but the request itself
may time out. You want to break apart that request into
smaller portions. The Web API can be seen in Listing 1.

This API can be called on a URL like this:

/api/test/SubmitData?inputData="sampleinput"

With the API out of the way, let’s write the apps. The app
does a very simple task: It calls the API 10,000 times. You’ll
measure the time it took to send those requests; note that
you’re not interested in measuring how long it actually
took for the server to respond. You’re only interested in
the operation of firing these requests. The reason you want
to measure the time it took only to send the requests is
so that you can get a decent comparison of native versus
JavaScript, and see if there’s any merit to all the fuss some
people are making regarding native performance being

Aren’t plug-ins how you’re
supposed to target native
capabilities in Cordova?

using System;
using Xamarin.Forms;

namespace HybridView
{
 public class HybridWebView : View
 {
 Action<string> action;
 public static readonly BindableProperty UriProperty =
 BindableProperty.Create(
 propertyName: "Uri",
 returnType: typeof(string),
 declaringType: typeof(HybridWebView),
 defaultValue: default(string));

 public string Uri
 {
 get { return (string)GetValue(UriProperty);}
 set { SetValue(UriProperty, value) ;}
 }

 public void RegisterAction(Action<string> callback)
 {
 action = callback;
 }

 public void Cleanup()
 {
 action = null;
 }

 public void InvokeAction(string data)
 {
 if (action == null || data == null)
 {
 return;
 }
 action.Invoke(data);
 }
 }
}

Listing 3: The HybridWebView view.

<?xml version="1.0" encoding="utf-8"?>
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:HybridView"
 x:Class="HybridView.HybridViewPage">

 <ContentPage.Content>
 <local:HybridWebView x:Name="hybridWebView" Uri="index.html"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 </ContentPage.Content>
</ContentPage>

Listing 4: The HybridViewPage.xaml file

17codemag.com Xamarin versus Cordova

avoiding multiple code-bases. I could write a plug-in using
Xamarin, but in its current incarnation, Xamarin likes to own
the entire project. The project structure is not the most con-
ducive to writing a Cordova plug-in. Or I could rely on the
community to provide a plug-in for me. But those plug-ins
are written for the most generic circumstances.

For instance, imagine that my requirement was to search an
offline store using a key. I could use a plug-in to read the
entire offline store, and then run it in a loop, going over
the JavaScript/native firewall over and over again, and pay-

The first thing to do here is to add an event handler for
the sendDataButton click event. You can do this in the
initialize function, as shown in this next snippet:

$("#sendDataButton").bind('click', app.sendData);

As you can see, clicking the button calls a function called
sendData on the app object. This function can be seen in
Listing 2.

As Listing 2 shows, you’re firing off 10,000 requests, but
you don’t wait for them to finish. You’re simply interested in
measuring the time it took to fire off the requests. In doing
so, you’re going from JavaScript to native, although all of
this is implemented in the WebBrowser itself. You can imag-
ine that going to the Cordova shell would probably be an
even more expensive operation. An example of going to the
Cordova shell might be calling the Camera API, or perhaps
some offline data store API other than window.localStorage.

Now, go ahead and run the application. It shows you a
user interface with a button that says “Send Lots of Data.”
Press that button, and the application informs you of how
long it took to send 10,000 requests.

10,000 requests are quite a bit, so, as can be seen from Figure
1, it took nearly 14 seconds to send these requests. Now let’s
repeat this example using native code written in Xamarin.

The Xamarin Hybrid App
Instead of writing a full Xamarin forms-based app, I in-
stead choose to write a hybrid app. A hybrid app, in this
case, is a Xamarin app that uses Web-based technolo-
gies for its user interface and basic business logic. It has
the ability to ask Xamarin native code to do heavy lifting
wherever necessary. For instance, here I ask the native
code to make the POST requests for us. This is a very
good approach because now I can move back and forth
between Cordova apps and custom Xamarin Hybrid apps.

What about plug-ins? Aren’t plug-ins how you’re supposed
to target native capabilities in Cordova? Indeed, plug-ins
are one way to the goal, but plug-ins usually still mean that
you have to write the plug-in in multiple platform-specific
languages. This brings me back to my original problem of Figure 1: The Cordova app took some time to send the data.

Figure 2: The Xamarin app
project structure

using System.Net;
using Xamarin.Forms;

namespace HybridView
{
 public partial class HybridViewPage : ContentPage
 {
 public HybridViewPage()
 {
 InitializeComponent();
 hybridWebView.RegisterAction(data => sendData());
 }

 private void sendData()
 {
 var now = System.DateTime.Now;
 string url = "..removed..";
 for (int i = 0; i < 10000; i++)

 {
 HttpWebRequest request =
 (HttpWebRequest)WebRequest.Create(url);
 request.Method = "POST";
 request.BeginGetResponse(
 (ar) =>
 System.Diagnostics.Debug.WriteLine(
 "end:" + ar.AsyncState.ToString()), i);
 }
 var then = System.DateTime.Now;
 DisplayAlert("Alert",
 "Total time (ms):" +
 (then - now).TotalMilliseconds,
 "OK");
 }
 }
}

Listing 5: HybridViewPage.xaml.cs

18 codemag.comXamarin versus Cordova

create this file in the HybridView.iOS/Droid projects and
embed it as content. You can also load a file over HTTP,
but I doubt that Apple would be too pleased with such an
app and you run a high risk of app rejection.

Next, you need to handle the action that can be invoked
by the JavaScript code, and in native code, fire off 10,000
POST requests and measure the time it took to send those
requests. As before, you won’t wait for the results to re-
turn. This code goes in the HybridViewPage.xaml.cs file,
and can be seen in Listing 5.

Great! All that‘s left to be done is to create a simple in-
dex.html file that can call this action, and a view renderer
that can load this HybridWebView view. Let’s first create
the view renderer as a class in the HybridView.iOS proj-
ect, which can be seen in Listing 6.

For the index.html, create a folder called Content in the
HybridView.iOS project and drop an index.html in that
folder. Make sure that its build action is set to Content,
as can be seen in Figure 3.

All that’s left now is to put some simple code in the HTML
file that calls the native function, which can be seen in
the next snippet:

<button type="button"
 onclick="invokeNativeCode('hello');">

ing a big performance penalty. Although this is a contrived
example, and for such common scenarios, plug-ins exist that
let you pass in the Search key once. Because the iteration is
done purely in native code, it’s quite conceivable that a plug-
in matching your specific business requirement doesn’t exist.

You could write it using ObjectiveC, Java, WinJS, and God
knows what else! Or, you could avoid that complexity all
together and use Xamarin for native, and HTML and Ja-
vaScript for UI and basic business logic. At least, that’s
what I like to do, because it seems to be the path to suc-
cess that requires the least effort.

Let’s get started.

The first thing to do is to create a Xamarin project. Start
Visual Studio for Mac (if you have a Mac), or just Visual
Studio with Xamarin tools installed, and choose to create
a Forms App project using C#. Ensure that the shared code
project is a portable class library, and choose to use XAML
for user interface files. Call this project HybridView.

Once the project is created, you should see a project
structure like that shown in Figure 2.

Next, in the HybridView project, add a new class called Hy-
bridWebView, and put the code shown in Listing 3 into it.

As you can see from Listing 3, you’re creating a simple view
that accepts a URI as a bindable property. Also, it allows you
to invoke an action. The idea is that you can specify what
page to load using the bindable property, and that page can
invoke native code functionality using the action.

Next, use this view in the HybridViewPage ContentPage.
Go ahead and edit its XAML portion, as shown in Listing 4.

As can be seen from Listing 4, I’m using the View I cre-
ated and I’m pointing it to a file called index.html. I’ll

Figure 3: Build action for the index.html file

Figure 4: The Xamarin app doing the same job as the
Cordova app

19codemag.com Xamarin versus Cordova

not more, and the improvement with vendor native, frankly,
isn’t that much beyond what Xamarin native already gives
you. That isn’t to say that I never find myself opening XCode.

Summary
In a land far, far away, there’s a battle brewing between
developers. Some insist that native is the only way you
should write apps. Others insist that writing apps using
native offers very little benefit and delivering Cordova
apps is the right way to serve your user’s needs.

Thankfully, I live far, far away from that land of battles. I feel
that the mobile dev landscape is changing very rapidly, and it
beckons you to stay on top of the changes so you know what’s
the best way to build an app today. From my point of view,
right now, writing user interfaces in HTML is the easiest. That
native code offers better performance seems to hold true,
but those situations where you must confine your efforts to
native code are rare. I also know that Xamarin offers 90% of
the performance benefit of vendor native, while also giving
me a portable codebase that I can share across platforms.

Thankfully, it’s possible for me to pick the right tool for
the right job. Sometimes it’s Xamarin, sometimes it’s Cor-
dova, and sometimes it’s vendor native.

I hope you found this article useful. Until next time,
happy coding!

 Invoke Native Code
</button>

Go ahead and build this app and run it in the same simu-
lator or device that you ran the Cordova project in. The
user interface shows you a button that you can click on.
Go ahead and click on it. Clicking on the button fires off
10,000 POST requests, and shows you the time taken for
those requests to be sent. This can be seen in Figure 4.

As is quite clear, the Xamarin app, being native, is orders
of magnitude faster than the Cordova app. Subsequent
executions show that the Xamarin app for this specific
task is four to 15 times faster. That is quite a bit—it’s
performance that the user will notice.

But let me qualify that; you’re still using an HTML-based
user interface. I’m sure you’re paying a slight perfor-
mance penalty for it, but, the user doesn’t notice the
extra five milliseconds it took to click an HTML button
versus a native button. In fact, in many instances, an
HTML UI may perform better than a native UI.

But the main point here is that being able to mix and
match when creating a user interface in Web technolo-
gies gives you a lot of flexibility in crafting up a respon-
sive, reflowable user interface using a single portable
skillset. Where you need to dive into native, you do so
using Xamarin. This gives you the best of all the worlds.

Although I’m sure that going vendor native will perform
even better, the effort to do so would be three times, if

using System.IO;
using HybridView;
using HybridView.iOS;
using Foundation;
using WebKit;
using Xamarin.Forms;
using Xamarin.Forms.Platform.iOS;

[assembly: ExportRenderer(typeof(HybridWebView),
typeof(HybridWebViewRenderer))]
namespace HybridView.iOS
{
 public class HybridWebViewRenderer :
 ViewRenderer<HybridWebView, WKWebView>, IWKScriptMessageHandler
 {
 const string JavaScriptFunction =
 "function invokeNativeCode(data){
 window.webkit.messageHandlers.invokeAction.postMessage(data);}";
 WKUserContentController userController;

 protected override void OnElementChanged(
 ElementChangedEventArgs<HybridWebView> e)
 {
 base.OnElementChanged(e);

 if (Control == null)
 {
 userController = new WKUserContentController();
 var script = new WKUserScript(
 new NSString(JavaScriptFunction),
 WKUserScriptInjectionTime.AtDocumentEnd, false);
 userController.AddUserScript(script);
 userController.AddScriptMessageHandler(this,

 "invokeAction");

 var config = new WKWebViewConfiguration {
 UserContentController = userController };
 var webView = new WKWebView(Frame, config);
 SetNativeControl(webView);
 }
 if (e.OldElement != null)
 {
 userController.RemoveAllUserScripts();
 userController.RemoveScriptMessageHandler("invokeAction");
 var hybridWebView = e.OldElement as HybridWebView;
 hybridWebView.Cleanup();
 }
 if (e.NewElement != null)
 {
 string fileName =
 Path.Combine(NSBundle.MainBundle.BundlePath,
 string.Format("Content/{0}", Element.Uri));
 Control.LoadRequest(
 new NSUrlRequest(new NSUrl(fileName, false)));
 }
 }

 public void DidReceiveScriptMessage(
 WKUserContentController userContentController,
 WKScriptMessage message)
 {
 Element.InvokeAction(message.Body.ToString());
 }
 }
}

Listing 6: The HybridWebViewRender

 Sahil Malik

20 codemag.comLegal Notes: Selecting and Operating a Legal Entity for Your User Group

ONLINE QUICK ID 1703041

Legal Notes: Selecting and Operating
a Legal Entity for Your User Group
Most user groups start off as a loosely formed confederation of like-minded developers who want to build a learning
community. Over time, as a user group grows, it may want to start hosting events, an activity that often necessitates the need
to enter into agreements for venue space and to solicit funds. When a user group decides to take this next step, the user group

can no longer operate as it once did. Rather, it must orga-
nize as a legal entity so that it can, among other things,
open a bank account. This is the most often-cited reason
why user groups organize as a formal business entity.

This article is for two basic classes of people. The first is the
group of people that either have a user group or want to form
a user group and want to take it to the next level via a busi-
ness entity. The second is the group of people that are part of
a user group that is organized under a formal business entity
but aren’t sure how to properly run such an organization.

DISCLAIMER: This and future columns should not be con-
strued as specific legal advice. Although I’m a lawyer, I’m
not your lawyer. The column presented here is for infor-
mational purposes only. Whenever you’re seeking legal
advice, your best course of action is to always seek advice
from an experienced attorney licensed in your jurisdiction.

Types of Business Organizations
There are a handful of business organization types that
your jurisdiction likely recognizes and these are enumer-
ated below. The most common type of organization for
a user group to select is that of a Non-Stock Non-Profit
Corporation. The other organization types are listed for
informational and differentiation purposes.

• Sole Proprietorship: As the name implies, this is
a single individual where the individual registers
a fictitious name with his jurisdiction for the pur-
poses of obtaining a Tax ID Number (TIN). Note:
sole proprietorships are not distinct business en-
tities like Partnerships, Corporations, and Limited
Liability Corporations (LLCs).

• Partnerships: Partnerships are business entities where
two or more individuals and/or entities enter into an
agreement and register under a given name with their
jurisdiction. There are several different types of part-
nerships including General Partnerships (GP), Limited
Partnership (LP), and Limited Liability Partnerships.

• Corporations: Corporation types can be broken
down into two main types: profit and non-profit.
For a user group, the most applicable type is that of
non-profit for the simple reason that the purpose of
the organization is not to make a profit to distrib-
ute to shareholders. Rather, a user group non-prof-
it is usually organized for an educational mission.
Typically, non-profits are organized on a non-stock
basis, meaning that unlike a for-profit corporation
that is owned by shareholders, a non-profit is typi-
cally in the care of and run by a board of directors
for the benefit of its members or some other com-

munity. Corporations, unlike partnerships and sole
proprietorships, are distinct entities unto them-
selves and stand apart from any individual person.

• Limited Liability Corporations (LLCs): LLCs are
a hybrid of the partnership and corporate model.
LLCs retain the simplicity of a partnership while
maintaining the liability shield of a corporation.

Because a user group is typically organized for non-profit
purposes, the only feasible entity is the non-profit corpo-
ration structure. Just because there aren’t profits involved,
don’t think for a moment that it’s all fun and games. In most
jurisdictions, the most heavily regulated and scrutinized
businesses are non-profits. The reason is that because most
non-profits run correctly under the law, non-profits are of-
ten used as part of fraudulent and criminal enterprises. As
it turns out, running a non-profit is not that difficult. Like
anything, you just need to understand and respect the rules.

Creating Your Non-Profit
Creating a corporation is, to many, surprisingly simple.
You only need a few things to get started:

• A unique name
• Articles for incorporation, which is a document that

sets forth the basic mission of your organization, its
name, and address. Depending on your jurisdiction,
the articles may also indicate whether your organi-
zation has members or not and whether the non-
profit is organized on a stock or non-stock basis.

• An initial slate of officers/board members (presi-
dent, secretary, and treasurer, at a minimum)

• The filing fee

You may have heard about a document known as by-laws
and may be wondering why I didn’t mention them above.
The reason is that in spite of their importance, by-laws
are not required to form a non-profit corporation. By-
laws set forth the parameters of what the board of direc-
tors are allowed to do on behalf of the corporation. By-
laws also specify things such as the maximum and mini-
mum number of board members, when and how elections
occur, how board vacancies are filled, etc. In the absence
of specific by-laws, most jurisdictions codify a number of
default rules to govern board of director conduct.

Just because there aren’t profits
involved, don’t think for a moment
that it’s all fun and games.

John V. Petersen, Esq.
johnvpetersen@gmail.com
about.me/johnvpetersen@
johnvpetersen

John is a graduate of the Rut-
gers University School of Law
in Camden, NJ and has been
admitted to the courts of the
Commonwealth of Pennsylvania
and the state of New Jersey.
For over 20 years, John has
developed, architected, and
designed software for a variety
of companies and industries.
John is also a video course
author for Lynda.com. John’s
latest video focuses on open
source licensing for develop-
ers. You can find the video
here: https://www.lynda.com/
Programming-Foundations-
tutorials/Foundations-
Programming-Open-Source-
Licensing/439414-2.html.

21codemag.com Legal Notes: Selecting and Operating a Legal Entity for Your User Group

“Non-Profit” Guidance

A good resource for those
wishing to have guidance on
how to operate a non-profit is the
National Council of Non-Profits:
https://www.councilofnonprofits.
org/tools-resources/principles-
and-practices. I’ve also written
extensively about a particular
user group’s difficulties with
proper non-profit governance
here: https://www.linkedin.com/
pulse/another-example-how-
user-group-organized-non-profit-
entity-petersen.

never held an election nor had any business meetings
and that votes were never taken. Assume further that
during this time, funds were solicited and spent in the
name of the corporation. In such a case, there’s a strong
argument to conclude that such funds where fraudulently
solicited and spent because there was no authorization
to do so. Again, it’s important to stress that a corpora-
tion is a distinct entity and that it’s the rules of the entity
that confer the authorization to act on its behalf. In this
particular case, there are problems with the solicitation
of funds and the withdrawal of funds from the organi-
zation’s bank account. Depending on your jurisdiction,
the amounts involved, and other circumstances, criminal
conduct may be involved that can be graded as a misde-
meanor or a felony.

Director Liability and Avoiding Conflict of Interest
Ultimately, the caretaking and well-being of an organiza-
tion depends on its board of directors. The idea is that
although the board and members come and go, the or-
ganization will endure. This is why for non-profits; board
members typically serve on a volunteer basis. If there’s
any malfeasance on the part of the organization, the di-
rectors, both as a group and individually, are on the hook
legally.

What is allowed? That depends on what the by-laws state.
In the absence of by-laws, what a board and organization
is allowed to do is narrowly construed to be just enough
to support the mission outlined in the articles of incor-
poration.

The watershed moment for most groups is when they
start dealing with money and further, when they pay out
money to individuals. This is where non-profits have to be
very careful. As a rule, to undertake such actions, there
must be by-laws stating that such actions are permis-
sible. One issue that’s often raised is if a board member
can be compensated. As a rule, the answer is a hard and
fast no. The only way around that is to have a provision
in the by-laws that carves out an exception for directors.
If such an exception does not exist, the by-laws can be
amended in accordance with the procedures set forth in
your organization’s by-laws or your jurisdiction.

Conclusion
If you find yourself in need of forming a business en-
tity for your user group, you need to understand that it
won’t be business as usual anymore. There are a number
of regulations, for good reason, that govern how non-
profits are operated. When dealing with money, extra
care must be taken to avoid any actual or appearance of
impropriety. As a best practice, have a well defined set of
by-laws that clearly outlines the actions the organization
and directors are allowed to undertake.

If there’s one word that you’ll want to keep in mind, it’s
the word transparency. Always be transparent in your
dealings with open meetings. Most importantly, be ex-
ceedingly transparent with your finances. At the end of
the day, you want your organization to transcend any
one person or group of individuals so that although indi-
vidual leadership changes, the organization will endure.

Once you file your paperwork, you now have a corpora-
tion and you can then obtain a Tax ID Number (TIN) from
the Internal Revenue Service (IRS). Once you have a TIN,
you can open a bank account.

Observing Corporate Formalities
Isn’t Optional!
One of the things that sets the corporation structure
apart from other structures is the need to observe what is
collectively known as corporate formalities. This includes
regular business meetings where minutes are taken and
votes recorded for actions the board takes. In the case
of a user group, having a user group meeting may satisfy
this requirement.

A good user group meeting is divided into two parts. The
first is the business part where a meeting is called to order
to discuss the organization’s business. This often includes
an approval of minutes from the previous meeting, a finan-
cial report, committee reports, etc. The second part of the
meeting is where the fun stuff happens and you talk about
whatever it is that brought you all together.

It’s important to understand that a corporation is a dis-
tinct entity and it must be run as such. Otherwise, the
organization ceases to operate as a bona-fide entity and
instead becomes an alter ego for one or a few people.
This is when there can be a great amount of unintended
consequences and legal trouble.

Annual Meeting
At the very least, a corporate entity must have an annual
meeting to, among other things, hold elections for the
board and offices such as President, Vice-President, etc.
Annual meetings also afford an opportunity to ratify ac-
tions taken in the current year, approve budgets, and en-
sure legal compliance. Well-run non-profits hold business
meetings several times a year, whether they are monthly,
quarterly, or semi-annually.

Annual Filing Requirements
Depending on what your user group non-profit does and
the requirements of your jurisdiction, you may have an-
nual filing requirements to satisfy.

By-Law Amendments
As time goes on, the organization may change and the
by-laws may have to change as well. There is a formal
process to amend by-laws that is typically stated in the
by-laws themselves.

If You’re Not Observing Corporate
Formalities, What’s the Big Deal?
If your group is dormant and doesn’t have any activities,
most likely, there’s no big deal. In that case, the group
should consider formal dissolution procedures. If, on the
other hand, yours is an active group that, among other
things, solicits, receives, and disburses money, the con-
sequences can be severe.

Remember that a corporation is a distinct entity and that
a board of directors acts on behalf of the corporate en-
tity. Let’s assume for a moment that a corporation with
members has been in existence for 10 years, but has

 John V. Petersen

codemag.com

ONLINE QUICK ID 1703061

22 Programming Alexa Skills for the Amazon Echo

Programming Alexa Skills
for the Amazon Echo
The Amazon Echo devices are incredibly useful products that come with a sparkling personality (Alexa) and a huge library of skills, with
more being added every day. But there’s a lot more to them than just playing songs and telling jokes.In this article, you’ll learn how
Alexa works, and how to develop, deploy, and test your own Alexa Skill in C#, and how to deploy it to Amazon for everyone to use.

Introducing Alexa
You may see the terms Alexa and Echo tossed around
interchangeably online, so to avoid any confusion, it’s
important to get some basic terminology in common (see
Table 1) before I begin.

Using Alexa
It all starts with you, the user, asking/telling Alexa to do
something (via the Amazon Echo device). From there, Alexa
takes your request and converts it to text. The text command
is parsed to identify the skill being requested, and then rout-
ed to the proper skill service endpoint for processing. Then,
the response is sent back from the service to Alexa, convert-
ed back into speech, and finally played for the user to hear.

If you’ve never used Alexa before, Figure 1 illustrates the
User Interaction Flow.

In practice, the command is structured like this: Wake Word
+ Phrase + Invocation Name + Intent (+ optional limit)

Examples:

• Alexa {verb} {SkillName} to {Do Something}
• Alexa ASK WheresMyBeer for the three nearest

breweries.
• Alexa TELL WheresMyBeer to get me a list of

breweries near me.

• Alexa PLAY the newest Norah Jones album.
• Alexa TURN OFF the living room lights.
• Alexa SET AN ALARM for 10 minutes from now.

Other supported commands include: Begin, Launch,
Load, Open, Resume, Run, Start, Talk to, and Use.

Example: Alexa RUN SurfReport AND GET ME the high
tide.

You can use the following prepositions: About, For, If, To,
Whether, and “blank” (to return a response prompting for
more information.)

Example: Alexa TELL SurfReport TO GET ME the high tide
FOR TOMORROW.

Alexa is great for returning lists of information, but you
can also be more restrictive in your requests by using
Limits with your Intents. You’re provided with a list of
built-in Amazon intent types (see the list: http://amzn.
to/2awO7gw), which include: AMAZON.DATE, AMAZON.
DURATION, AMAZON.FOUR_DIGIT_NUMBER, AMAZON.
TIME, AMAZON.NUMBER, and AMAZON.LITERAL. You
can also create custom intent limit types, just like in
.NET.

Be sure to read the article “Understanding How Users In-
voke Custom Skills,” located at http://amzn.to/1UmXGjz

Chris G. Williams
chrisgwilliams@gmail.com
www.geekswithblogs.net/cwilliams
twitter.com/chrisgwilliams

Chris G. Williams is a Senior
Developer for Fluor Government
Group, a nine-year multiple Mi-
crosoft MVP awardee (VB, XNA/
DirectX, Windows Phone) and the
author of Professional Windows
Phone Game Development.

He’s authored numerous articles
on a variety of technologies, led
a 14-city speaking tour, and has
a series of mobile development
webinars produced through
DevExpress.com.

Chris is a regular presenter at
conferences, code camps, and
user groups around the country.
He blogs at GeeksWithBlogs
(.net) and also manages the
MonoGame Indie Devs technical
community on Facebook.

Term Definition
Amazon Echo This is the hardware product. Currently available in two formats:

Echo and Echo Dot:
• Activated by a wake word, these are functionally the same, although the Echo Dot has a much

smaller speaker.
• Amazon Tap and Fire TV Remote: Both are activated by touch and then respond to voice commands.

Alexa This is the personality of the Amazon Echo device and also the “wake word” you use to get
Alexa’s attention. (You can also set the wake word to use “Amazon” or “Echo.”)

Wake Word A word that Alexa listens for, to be followed by a command. Other (optionally configurable) wake
words include “Amazon” and “Echo.”

If you have an Android phone or tablet, you’re probably familiar with the “OK Google” wake word, and
of course, Windows 10 and Windows 10 Phone users have Cortana, who listens for “Hey Cortana.”

Alexa Voice Service This is the cloud-based brain behind the voice, and is also responsible for translating voice to
text and back again. Handles all natural language processing and interpretation.

Alexa Skill This is a function that Alexa knows how to perform. Common Alexa Skills include playing music, playing
games, telling jokes, checking your calendar, controlling devices via a smart hub, and a lot more.

Companion App In order to configure the Amazon Echo, and Alexa, as well as any external hardware and smart
home devices, you need to run the companion app (currently available for Android and iPhone).
For an enhanced Alexa Skill experience, you can push additional information and graphics to the
companion app, in addition to the usual voice response via Alexa.

Table 1: Alexa Terms and Definitions

codemag.com 23Programming Alexa Skills for the Amazon Echo

Alexa Skills Kit
The Alexa Skills Kit, also referred to as the ASK, is Ama-
zon’s free Alexa SDK. The ASK comes with a lot of great
samples and documentation. To get started, pull down
some of the sample code and take a look at how things are
set up before jumping into building your own skill in C#.

Amazon likes to move pages around occasionally, so rath-
er than just giving you a link that might break later on,
I’m going to guide you down the yellow brick road, so to
speak, in order to find the information you seek:

1. Starting at the Amazon Alexa Skills Kit page, click
the “Get Started With Our Step By Step Checklist” link
(http://amzn.to/2cb5a9o).

2. Click the “Getting Started Guide” link (http://amzn.
to/1UczDnl).

3. Click the “Using the Alexa Skills Kit Samples” link
(http://amzn.to/2hFt50M).

On the samples page, you’ll see a section called “Getting
the Source Code for the Samples and the Java Library,”
which contains links to the JavaScript (https://github.
com/amzn/alexa-skills-kit-js) and Java (https://github.
com/amzn/alexa-skills-kit-java) samples, along with
some additional info about each.

Remember, there are no C# samples yet. We’re brave ex-
plorers forging a path through uncharted territory! Don’t
worry though, we’re on this adventure together.

If you haven’t already, click the link above and grab the
JavaScript sample. Once you’re at the GitHub page for
the Node.js Alexa Skills Kit Samples, look for the green
button on the right that says Clone or Download.

If you’re familiar with GitHub, and have Git set up locally
already, feel free to clone the repo, otherwise you can
just download the alexa-skills-kit-js-master.zip file to
your local computer and extract it. It’s not very large,
weighing in at roughly 8.5 MB.

There are a lot of great samples to choose from (see Fig-
ure 2), and I’ll be focusing on two of them right now
(although I encourage you to look at all of them. Pick
them apart, deploy them, and play with them.

Every Alexa Skill sample project contains a speechAssets
folder, which, in turn, contains (at least) two files: In-

for a much more in-depth discussion of command struc-
tures and built-in types.

Starting Your First Alexa Skill
When developing Alexa Skills for the Amazon Echo, you’ll
be spending a lot of time at the Alexa Developer Portal
(http://developer.amazon.com/alexa), so you should
take a moment to familiarize yourself with it now.

In addition to some rotating featured content, you’ll find
some “getting started” links and some “Why Alexa?” in-
formation. Near the top, you’ll also find links to the fol-
lowing three sections:

• Alexa Voice Service
• Alexa Skills Kit
• Alexa Fund

I’ll go over all three sections in this article, starting with
the Alexa Voice Service.

Alexa Voice Service
The Alexa Voice Service (AVS) is the cloud-based speech-
recognition and natural language processing service for
the Amazon Echo/Alexa. Because everything is cloud-
based, Amazon can roll out enhancements and updates
as needed, and Alexa continues to grow smarter and
smarter.

In addition to supporting the Amazon Echo devices, the
Alexa Voice Service also allows you to voice-enable any
connected product that has a microphone and a speaker,
like a smart watch, TV, refrigerator, or even your car.

If you’re looking to create commercial-grade physical
products that use Amazon Alexa, you can also purchase
hardware development kits relatively inexpensively to
prototype with.

Figure 1: The Alexa User Interaction Flow.

For more information,
read the article
“Understanding How Users
Invoke Custom Skills,” located
at http://amzn.to/1UmXGjz.

Figure 2: The Sample Alexa Skill
Projects

codemag.com

]
}

Slots (Amazon lingo for parameters) are how you define
the data and type your intent accepts. You can only use
them on your own intents though, because the built-in
intents don’t allow it. In the MinecraftHelper schema,
there is one slot, named Item, which you’ll see again in
your SampleUtterances file in just a bit.

The built-in intents are super useful, because you don’t
have to write any special code to implement them. I’ll
dig into them in more detail later, but here’s a quick run-
down of a few of the most commonly used ones:

• AMAZON.CancelIntent (stay in the skill, cancel a
transaction or task)

• AMAZON.StopIntent (stop and exit the skill)
• AMAZON.HelpIntent (provide the user with infor-

mation on how to use the skill)

You get all of these for free. You don’t even have to add
them to your schema unless you intend to extend them to
customize the utterances that trigger them.

They didn’t do it in the MinecraftHelper sample, but if
you have several intents listed in your schema, it’s a best
practice to always put the AMAZON.HelpIntent last! This
is because Alexa defaults to the last intent in the schema
if it can’t otherwise find a match. You can use this to
provide the user with some helpful suggestions on how
to properly use your skill.

Also, Intent and Slot names are case-insensitive and you
can’t give them the same name (even with different case).
Doing so gives you an error when you try to publish the skill.

If the IntentSchema.json file is where you define what
capabilities your Alexa Skill has, then the SampleUtter-
ances.txt file is where you define how the user can invoke
them. Take a look at the SampleUtterances.txt file from
the Hello World project sample:

HelloWorldIntent say hello
HelloWorldIntent say hello world
HelloWorldIntent hello
HelloWorldIntent say hi
HelloWorldIntent say hi world
HelloWorldIntent hi
HelloWorldIntent how are you

As you can see, there are a number of ways to invoke the
HelloWorldIntent, ranging from brief (“hi”) to slightly
less brief (“say hello world”). The AMAZON.HELPIntent
isn’t included in the HelloWorld SampleUtterances.txt
file, because it’s a default behavior (it responds to the

tentSchema.json and SampleUtterances.txt. These two
files are the heart of defining a good voice interface,
which is the key to a robust user experience.

The HelloWorld sample is definitely the simplest, so I’ll
take a look at it, and the MinecraftHelper sample (which
is relatively complex by comparison) before jumping in to
building your own.

The intentSchema.json file is where you define the fea-
tures (called Intents) of your Amazon Alexa Skill. Un-
fortunately, the IntentSchema.json for the HelloWorld
sample isn’t particularly interesting.

Inside the Intents array, there‘s a HelloWorldIntent and
one of the built-in intents (more on that in a minute):
AMAZON.HelpIntent.

{
 "intents":
 [
 {
 "intent":"HelloWorldIntent"
 },
 {
 "intent":"AMAZON.HelpIntent"
 }
]
}

The IntentSchema.json for the MinecraftHelper sample
is a little more varied, because it accepts an argument
(item) and has more of the built-in AMAZON intents in-
cluded.

{
 "intents":
 [
 {
 "intent": "RecipeIntent",
 "slots":
 [
 {
 "name":"Item",
 "type":"LIST_OF_ITEMS"
 }
]
 },
 {
 "intent":"AMAZON.HelpIntent"
 },
 {
 "intent":"AMAZON.StopIntent"
 },
 {
 "intent":"AMAZON.CancelIntent"
 }

There are no C# samples yet.
We’re brave explorers forging
a path through uncharted
territory!

Always put the HelpIntent
last because Alexa defaults
to the last intent in the
schema if it can’t otherwise
find a match.

24 Programming Alexa Skills for the Amazon Echo

codemag.com

Deploying Your Alexa Skill as
an Azure API App.

In this article, I mention deploying
my sample Alexa Skill as an Azure
API app.

Unfortunately, going into
the details of Azure or Web
publishing is beyond the scope of
this article.

Fortunately, Microsoft has an
excellent article on publishing
your solution as an Azure API app,
which I encourage you to read:
http://bit.ly/2hvH5NW.

The index.js file from the HelloWorld sample is pretty
straightforward and contains a few pieces that you’ll
need for the C# implementation later, so let’s take a look
at that one first.

At the beginning of the file, you’ll find the APP_ID and
the AlexaSkill library references, which you’ll need to
make use of once you have the skill defined with Ama-
zon.

var APP_ID = undefined;
//replace with "amzn1.echo-sdk-ams.app.[your-
unique-
value-here]";

var AlexaSkill = require('./AlexaSkill');

The onLaunch event greets users of your skill, and op-
tionally provides them a brief synopsis of how they can
expect to interact with it. Make note of the speechOutput
and repromptText variables.

HelloWorld.prototype.eventHandlers.onLaunch
 = function (launchRequest, session, response)
{
 console.log("HelloWorld onLaunch requestId: "
 + launchRequest.requestId + ", sessionId: "
 + session.sessionId);

 var speechOutput = "Welcome to the Alexa Skills
 Kit, you can say hello";

 var repromptText = "You can say hello";

 response.ask(speechOutput, repromptText);
};

Next up are some session-related event handlers that
should look familiar to anybody who’s done some Web
development in the past. Most Alexa sessions last for a
single interaction, but it’s possible, depending on the
skill, for a session to last for four or five interactions.

The onSessionStarted event gives you an opportunity to
do any necessary initialization prior to launching your
skill.

HelloWorld.prototype.eventHandlers.onSessionStarted
 = function (sessionStartedRequest, session)
{
 console.log("HelloWorld onSessionStarted requestId:
 " + sessionStartedRequest.requestId
 + ", sessionId: " + session.sessionId);

 // any initialization logic goes here

};

The onSessionEnded event allows you an opportunity to
add code for any necessary cleanup when the skill is fin-
ished executing.

HelloWorld.prototype.eventHandlers.onSessionEnded
 = function (sessionEndedRequest, session) {

phrase “HELP”), but if you wanted to extend it, you could
add some lines like this:

AMAZON.HelpIntent help me
AMAZON.HelpIntent rut row
AMAZON.HelpIntent oh no

This is a plain text file containing a dictionary of phrases,
organized as key/value pairs that map the intents in your
IntentSchema.json file to the sample spoken phrases.

There are a couple of things to keep in mind with this file:

• The KEY (on the left) must match a name in the
Intents Schema document.

• The VALUE is the spoken phrase, and may include
slots, such as “Limit” (if you defined the intent to
accept them.)

The HelloWorld sample still responds to “help,” in addi-
tion to the other phrases you just added.

By comparison, the SampleUtterances.txt file in the
MinecraftHelper sample project is significantly longer (so
long, in fact, that I’m not even going to show you all
120+ lines of it here).

RecipeIntent how can I build a {Item}
RecipeIntent how can I build an {Item}
RecipeIntent how can I build {Item}
RecipeIntent how can I craft a {Item}
RecipeIntent how can I craft an {Item}
RecipeIntent how can I craft {Item}
RecipeIntent how can I get a {Item}
RecipeIntent how can I get an {Item}
RecipeIntent how can I get {Item}
RecipeIntent how can I make a {Item}
RecipeIntent how can I make an {Item}
RecipeIntent how can I make {Item}
RecipeIntent how can you build a {Item}
RecipeIntent how can you build an {Item}

Even if you have multiple intents defined in your In-
tentSchema, they all go in the same SampleUtterances
file. Whitespace is ignored, so feel free to break them up
or group them however you like.

One thing to make note of, especially in the last sample,
is the use of the “a” and “an” articles, as well as their
omission. The more detailed you make this file, the bet-
ter, because you don’t know how the user pronounces
these expressions. One of the other samples in the zip file
you downloaded includes options like “I don’t know” and
“dunno” in the list of acceptable utterances.

The Alexa Voice Service (which I’ll get to in a bit) is quite
good. Depending on your enunciation, it’s definitely
good enough to tell the difference between “a” and “an”
before a word. Trying to account for every possible way
your users will interact with Alexa, combined with local
dialects, slang, and accents, can be quite a challenge,
but you’ll want to at least get the basics.

The next two files you’ll want to familiarize yourself with
are the index.js and AlexaSkill.js files, which are located
in the src folders of each of the sample projects.

25Programming Alexa Skills for the Amazon Echo

codemag.com

ing 1), but the intenthandler section is a bit more in-
volved, and is worth taking a look at, especially the section
where it shows the simultaneous use of speech output and
piping the same information to a card in the Alexa app.

The next file to take a look at is AlexaSkill.js, also locat-
ed in the src directory of each sample project. This class
serves as the base class for the index.js file, and contains
the plumbing for the request, event, and intent handlers.
There’s nothing specific to your skill here, and each in-
stance of this file is the same from one project to the next,
so I won’t spend any further time on that one right now.

There’s also a recipes.js file, which is specific to the
MinecraftHelper project. I won’t include the whole thing
here, because it isn’t really relevant to what we’re doing
(and it’s a huge file), but I will add a small snippet, just
so you can see how external data can be referenced in the
typical key/value or dictionary style:

module.exports = {
 "snow golem": "A snow golem can be created by
 placing a pumpkin on top of two snow blocks
 on the ground.",
 "glass": "Glass can be obtained by smelting
 sand in a furnace.",
 "boat": "A boat can be obtained by making a U
 shape with five wooden planks.",
 "hay bale": "A hay bale can be crafted by
 placing wheat in a 3 by 3 grid in a crafting
 table.",
 "clay": "Clay is obtained by breaking clay
 blocks with a non silk touch tool.",

 console.log("HelloWorld onSessionEnded requestId: "
 + sessionEndedRequest.requestId
 + ", sessionId: " + session.sessionId);

 // any cleanup logic goes here

};

Lastly, the intentHandlers method registers the intents
that are defined in the IntentSchema.json file, and tell
Alexa how to respond to them. Make note of the tellWith-
Card() method, which allows Alexa to respond with ad-
ditional information, or even graphical content, via the
Amazon Alexa app on your smart phone.

HelloWorld.prototype.intentHandlers = {
 // register custom intent handlers

 "HelloWorldIntent": function (intent, session,
 response) {
 response.tellWithCard("Hello World!", "Hello
 World", "Hello World!");
 },

 "AMAZON.HelpIntent": function (intent, session,
 response) {
 response.ask("You can say hello to me!", "You
 can say hello to me!");
 }
};

Most of the index.js file for the MinecraftHelper is very
similar to this one, so I won’t include it all here (see List-

Figure 3: Create a new Web Application project.

26 Programming Alexa Skills for the Amazon Echo

codemag.com

I’m using the Web API template because it provides near-
ly everything I need right out of the box, with a minimum
of additional work required. This makes it really easy to
get up and running quickly.

Hit OK and wait a couple moments. If all goes well, you’ll
have the Project_Readme file onscreen, congratulating
you for successfully creating a new project. Take a mo-
ment to bask in all that glory, then close the window, and
push up your sleeves. It’s time to do some work.

In your Solution Explorer under the AlexaDemo project, cre-
ate a new folder and call it SpeechAssets. This is where you’ll
put the IntentSchema.js and SampleUtterances.txt files.

1. Add a new JS file to the folder and call it
IntentSchema.json.

2. Add a new Text file (if you can’t find the file type,
look under General) to the folder and name it
SampleUtterances.txt.

Once you’ve done that, it should look like Figure 5.

Next, open up File Explorer and dive into the helloWorld\
speechAssets folder. Open up the IntentSchema.json and

 "bowl": "A bowl can be crafted by placing
 three wooden planks in a v shape in a crafting
 table."
};

The last file to look at in each of the sample projects is the
README.md markdown file, which provides step-by-step
instructions on how to deploy the project to AWS Lambda
and setup the skill. This file is essential if you plan to do
a test deployment of any of the sample projects.

At this point, you’ve looked at everything relevant that
goes into the sample projects, so it’s time to get started
making your own Alexa Skill in C# and Visual Studio.

Time to Write Some Code
Start by creating a new ASP.NET Web Application in Visual
Studio 2015 (see Figure 3). I’m using Visual Studio Com-
munity 2015 because it’s free, but if you have the Profes-
sional or Enterprise editions, that’s cool too. Name your
project whatever you like (I’m naming mine AlexaDemo)
and uncheck the box for Application Insights.

In the next dialog box, select the Web API template (see
Figure 4) and unselect the “Host in the cloud” checkbox.

HowTo.prototype.intentHandlers = {
 "RecipeIntent": function (intent, session, response) {
 var itemSlot = intent.slots.Item, itemName;

 if (itemSlot && itemSlot.value) {
 itemName = itemSlot.value.toLowerCase();
 }

 var cardTitle = "Recipe for " + itemName,
 recipe = recipes[itemName],
 speechOutput,
 repromptOutput;

 if (recipe) {
 speechOutput = {
 speech: recipe,
 type: AlexaSkill.speechOutputType.PLAIN_TEXT
 };

 response.tellWithCard(speechOutput, cardTitle, recipe);
 } else {
 var speech;

 if (itemName) {
 speech = "I'm sorry, I currently do not know the
 recipe for " + itemName + ". What else can I help
 with?";
 } else {
 speech = "I'm sorry, I currently do not know that
 recipe. What else can I help with?";
 }

 speechOutput = {
 speech: speech,
 type: AlexaSkill.speechOutputType.PLAIN_TEXT
 };

 repromptOutput = {
 speech: "What else can I help with?",

 type: AlexaSkill.speechOutputType.PLAIN_TEXT
 };

 response.ask(speechOutput, repromptOutput);
 }
 },

 "AMAZON.StopIntent": function (intent, session, response) {
 var speechOutput = "Goodbye";
 response.tell(speechOutput);
 },

 "AMAZON.CancelIntent": function (intent, session, response) {
 var speechOutput = "Goodbye";
 response.tell(speechOutput);
 },

 "AMAZON.HelpIntent": function (intent, session, response) {
 var speechText = "You can ask questions such as, what's the
 recipe, or, you can say exit... Now, what can I help you
 with?";

 var repromptText = "You can say things like, what's the
 recipe, or you can say exit... Now, what can I help you
 with?";

 var speechOutput = {
 speech: speechText,
 type: AlexaSkill.speechOutputType.PLAIN_TEXT
 };

 var repromptOutput = {
 speech: repromptText,
 type: AlexaSkill.speechOutputType.PLAIN_TEXT
 };

 response.ask(speechOutput, repromptOutput);
 }
};

Listing 1: intentHandler for MinecraftHelper sample

27Programming Alexa Skills for the Amazon Echo

codemag.com

Learn More About
Integrating Alexa Voice
Service Everywhere.

If you really want to go beyond
developing for Amazon Echo
devices, start integrating Alexa
into other devices or building
your own hardware!

Read “Getting Started with
the Alexa Voice Service” for an
excellent walkthrough of the
process: http://amzn.to/1WwsJYs.

terface-reference). This represents the Response object
that your service returns to the Alexa Voice Service.

I’m not using any session attributes in this sample, but the
sessionAttribute collection is where you map any key-value
pairs that need to be persisted within an Alexa session.

You’ll notice that within the “response” section, there are
three entries: outputSpeech, card and reprompt. The text
in the outputSpeech block is what the AVS converts back
into speech for Alexa to read to you, and the card block
content is what gets sent to the Alexa Companion App on
your phone or tablet. The reprompt block contains what
Alexa says to you if you don’t respond to the initial re-
sponse after activating your skill.

Be aware of the following size limitations when crafting
your response:

SampleUtterances.txt files and copy/paste their contents
into the empty files of the same name you created a mo-
ment ago. Make sure to save them.

You’ll come back to these shortly. The next thing you
need is a controller class, because you’re using Web API.
Right-click on the Controllers folder and add the “Web
API 2 Controller - Empty” scaffold, as seen in Figure 6.

Give it a name (AlexaDemoController.cs sounds good)
and hit the Add button. After a few seconds, you’ll be
staring at an empty controller class.

Before you start writing the controller, take a look at
Listing 2, which is a slightly modified version of the
Sample Response found in the ASK Interface Reference
docs (it’s here: https://developer.amazon.com/public/
solutions/alexa/alexa-skills-kit/docs/alexa-skills-kit-in-

Figure 4: The Web API Template

Figure 5: The speechAssets folder

• The outputSpeech response can’t exceed 8000
characters.

• All of the text included in a card can’t exceed 8000
characters. This includes the title, content, text,
and image URLs.

• An image URL (smallImageUrl or largeImageUrl)
can’t exceed 2000 characters.

• The token included in an audioItem.stream for the Au-
dioPlayer.Play directive can’t exceed 1024 characters.

• The URL included in an audioItem.stream for the Au-
dioPlayer.Play directive can’t exceed 8000 characters.

• The total size of your response can’t exceed 24 ki-
lobytes.

28 Programming Alexa Skills for the Amazon Echo

codemag.com

I’m not using any session attribute in this example, but if
you were to add some, they would be in key/value pairs,
and would be defined like this:

sessionAttributes = new {
 "string": object,
 "string": object
}

The same rules that apply to sessions in Web pages are
relevant here as well; don’t assume they’ll always be

If your response exceeds these limits, the Alexa service
returns an error at deployment time.

Now that you have an idea of what a proper response
should look like, it’s time to jump back in to Visual
Studio and add some code to the controller. Add this
dynamic method signature inside the AlexaDemoCon-
troller class:

[HttpPost, Route("api/alexa/demo")]
public dynamic AlexaDemo(dynamic request) {

}

The Alexa Voice Service requires the message to be sent
as a POST (not a GET) request and the Route attribute
is how the request will get to the right API call in the
service. Of course, you could create a C# class to strongly
type the return object, but this dynamic approach works
just as well.

In the message, in addition to the response, you’ll need
to include a version number and session attributes (even
if empty).

Figure 6: Add an empty controller scaffold to your project.

{
 "version": "1.0",
 "sessionAttributes": {},
 "response":
 {
 "outputSpeech":
 {
 "type": "PlainText",
 "text": "Hello World, from the Alexa Demo"
 },
 "card":
 {
 "type": "Simple",
 "title": "Alexa Demo",
 "content": "This is the Alexa demo."
 },
 "reprompt":
 {
 "outputSpeech":
 {
 "type": "PlainText",
 "text": "Can I help you with anything else?"
 }
 },
 "shouldEndSession": false
 }
}

Listing 2: Modified Sample Response from ASK Reference Docs

If you’re writing a single
Web service to support
additional speech enabled
devices beyond Alexa,
you can include any additional
SSML tags that the other
devices support in the response
and Alexa ignores anything
she doesn’t recognize.

29Programming Alexa Skills for the Amazon Echo

codemag.com

The shouldEndSession property of the response object
is something I haven’t talked about yet. In a skill that
requires multiple interactions with Alexa, you set this to
false, to preserve any session attributes until the end of
the interaction, but in this example there’s no need to do
this, so I’ve set it to true.

Within the outputSpeech block, you have a type of Plain-
Text, which is exactly what it sounds like. Whatever you
put here is exactly what Alexa will read back to you.

The Alexa Voice Service also supports another type,
called Speech Synthesis Markup Language (SSML). SSML
is used when you need to control how Alexa generates
the speech, such as specific inflection via phonemes,
adding a longer pause between phrases, or even inject-
ing an MP3 clip in the response.

Amazon didn’t create the SSML standard, but they do sup-
port a subset of it. You can find the entire list of Alexa-
supported SSML tags here: http://amzn.to/1OaLmAZ.

there because the session could expire at any time, and
don’t put anything sensitive in them.

Inside the AlexaDemo() method, add the following code:

return new {
 version = "1.0",
 sessionAttributes = new { },
 response = new {
 outputSpeech = new {
 type = "PlainText",
 text = "Welcome to the Alexa Demo"
 },
 card = new {
 type = "Simple",
 title = "Alexa Demo",
 content = "Welcome to the Alexa Demo"
 },
 shouldEndSession = true
 }
};

Figure 7: AlexaDemo with Swagger!

30 Programming Alexa Skills for the Amazon Echo

codemag.com

Swagger is a great set of free open source tools that help
you build and test your RESTful APIs. You may have heard
of Postman, which is another great tool. In this article, I’m
using Swagger (mostly because you get it automatically
when publishing to Azure API apps, which is even better).

To test the service, type anything (i.e., “hi” or “hello” or what-
ever) in the request box and click the “Try it out!” button.
You’ll see the Response Body, which matches the response
object you defined earlier, along with a Response Code of 200,
and the Response Headers, which you can see below:

{
 "pragma": "no-cache",
 "date": "Sun, 18 Dec 2016 19:27:47 GMT",
 "content-encoding": "gzip",
 "server": "Microsoft-IIS/8.0",
 "x-aspnet-version": "4.0.30319",
 "x-powered-by": "ASP.NET",
 "vary": "Accept-Encoding",
 "content-type": "application/json; charset=utf-8",
 "cache-control": "no-cache",
 "x-ms-proxy-outgoing-newurl": "https://microsoft-
 apiapp82820479ea5048298e6d4a3969eb78f7
 .azurewebsites.net/api/alexa/demo",
 "content-length": "269",
 "expires": "-1"
}

Now that you’ve tested the service, it’s time to visit the
Amazon Developer Portal and add your new skill.

Setting Up an Alexa Skill
In your browser of choice, visit http://developer.ama-
zon.com/ask and sign in (or sign up) to get to the De-
veloper Console.

If you’re signing up for the first time, be aware that what-
ever account you use going forward should be the one
that’s paired up to your Amazon Echo device and Market-
place Account (if you have one).

Once you’re in, click on ALEXA in the top menu. You
should see (at least) two options available. Click the
Get Started button under the Alexa Skills Kit and you’ll
be taken to the Skills page (shown in Figure 8), which
is where you will add, edit, and track the various skills
you’ve submitted.

If you’re writing a single Web service to support addition-
al speech enabled devices beyond Alexa, you can include
any additional SSML tags that the other devices support
in the response and Alexa ignores anything she doesn’t
recognize.

The following snippet shows what your outputSpeech
block looks like with SSML instead of plain text and with
an embedded sound clip:

"outputSpeech" = new {
 type= "SSML",
 ssml= "<speak>This output speech uses SSML.
 <audio src=http://www.mp3.com/file.mp3 />
 </speak>"
}

If you’re using SSML instead of plain text, there are some
limits you should be aware of when crafting your service’s
response to Alexa:

• The entire outputSpeech response may not be
greater than 8000 characters.

• Card text may not exceed 8000 characters, includ-
ing image URLs.

• Image URLs may not exceed 2000 characters.
• The total size of your response message may not

exceed 24K.
• These are the limitations most relevant to what

I’m doing here, but there are more than this, so
be sure to look at all of them (here: http://amzn.
to/1UcAgxa) if you plan to work with SSML.

Congratulations! You’re done with coding the controller.
In the next section, I cover deploying and testing your
Alexa skill.

Deploying and Testing Your Service
In order to deploy and test your Alexa Skill, you’ll have
to publish it somewhere. I’ve published mine as an Azure
API app (which you can find at http://bit.ly/2gXh4In), but
you’re free to put yours anywhere that’s publicly accessible
on the Web or the cloud. There are benefits (and drawbacks)
no matter which you choose, so I’m leaving that up to you.

If you visit the previous link, you’ll see something that
looks like Figure 7, and if you aren’t familiar with Swag-
ger, you’re in for a real treat.

Figure 8: The Alexa Skills Page

31Programming Alexa Skills for the Amazon Echo

codemag.com

1. If you’re hosting your service on your own website
and it has a certificate, select “My development
endpoint has a certificate from a trusted certificate
authority.”

2. If you’re hosting your service in Azure (like me),
you have a built in certificate already, so select “My
development endpoint is a sub-domain of a domain
that has a wildcard certificate from a certificate au-
thority.”

3. If neither of those apply, you have the option of
selecting “I will upload a self-signed certificate in
X.509 format.” If you don’t know how to create your
own cert, Amazon provides you with a link next to
this option to walk you through the process.

4. Click the Next button.

Next up is the Test section (Figure 13). There are no step-
by-step instructions here, just some handy tools to play
with:

• You can set your skill to Enabled or Disabled. It’s set
to Enabled by default.

• In the Voice Simulator text box, you can type any-
thing you want, just to get an idea of what your
skill sounds like coming from Alexa. This is super
handy if you don’t actually HAVE an Amazon Echo
to test with. Also, this is a great place to practice
some of those SSML tags I mentioned earlier. (SSML
Reference: http://amzn.to/2i0Sh2a)

• In the Service Simulator box, you can enter an ut-
terance to test your endpoint. Let’s do that now, by
typing Hi in the “Enter Utterance” box and clicking
the Ask Alexa Demo button.

• Once you click the button, the Service Simulator
displays the Service Request and Service Response
in JSON. If you don’t get anything back, check the
URL of your HTTPS endpoint, as Alexa may be hav-
ing a problem reaching your service.

• You’ve seen the response object a few times by now,
so I won’t include it here again, but you should def-

Click the Add a New Skill button, and you are presented
with some fields to fill out in order to create your Alexa
Skill.

To create the skill for the Alexa Demo, start by filling in
the Skill Information screen (as shown in Figure 9.) Do
the following:

1. Select the Custom Interaction Model radio button.
2. Select the Language of your skill (default is English U.S.)
3. Type in the Name of the skill (i.e., Alexa Demo)
4. Type in the Invocation Name (what you say to acti-

vate the skill)
5. Click the Next button.

On the next screen (Figure 10), define the interaction
model.

1. Switch back over to Visual Studio, copy the JSON
contents of your intentSchema.js file, and then
paste it into the text box labeled Intent Schema.

2. You haven’t defined any Custom Slot Types in this
skill, so you can skip that section.

3. Do the same thing for the SampleUtterances.txt file,
pasting it into the Sample Utterances text box.

4. Click the Next button.

In the Configuration section (see Figure 11), provide in-
formation about your service endpoint.

1. Select the HTTPS radio button.
2. Select the geographical region closest to you (North

America or Europe)
3. Enter the URL of your service endpoint (this is

wherever you hosted it, including the “api/alexa/
demo”.)

4. Click the Next button.

In the SLL Certificate section (Figure 12), provide the
required certificate information.

Figure 9: The Skill Information Tab

32 Programming Alexa Skills for the Amazon Echo

codemag.com

• Also, under the Service Response section, you
can click the Listen button to hear Alexa read
the relevant portion of the service response out
loud.

• When you’re finished in this section, go ahead and
click the Next button (again).

initely take a minute to look at the Service Request
(either in the simulator or in Listing 3.) There’s a
lot of good information in there, especially if you
need to debug your endpoint. Among other things,
it shows what Intent is being called, along with any
parameters (slots) being passed along with it.

Figure 10: The Interaction Model Tab

Figure 11: The Configuration Tab

33Programming Alexa Skills for the Amazon Echo

codemag.com

If you have an Amazon Echo device, make sure that you’re
in the correct profile and say this: “Alexa Tell AlexaDemo
Hello” and Alexa responds with “Welcome to the Alexa
demo.”

Let’s go back to the Developer Console and pick up where
you left off, in the Publishing Information section.

I honestly don’t recommend submitting this skill for cer-
tification. It will probably get rejected by Amazon because
it doesn’t really do much, and it doesn’t fit any of the
readymade categories (it’s not a game or lifestyle skill, for
example), but you can at least fill in the Short and Full
Skill Description fields, along with the example phrases. If
you’ve got an icon or logo handy, add those as well.

Once you hit the Save button, go look in your companion
app again and you’ll see that everything has been up-
dated accordingly. Go ahead and click the Next button
one more time.

The Privacy & Compliance section (Figure 14) asks you a
few basic questions about your app, in terms of who it’s
targeted for, if it allows users to spend money, and if it
collects any information about your users.

And with that, you’re done. Go forth and make many awe-
some Alexa Skills.

For Further Thought
As I mentioned earlier, one of the really great things
about the Amazon Voice Service is that you aren’t limited
to developing for the Amazon Echo. It’s not a big leap
from this device to connected home and car applications,
or even pocket-sized devices, using a Raspberry Pi Zero
and a Cellular piHat.

At this point, your skill isn’t published yet, but it is avail-
able for you to test locally on your Amazon Echo device.
Just open the Alexa Companion App on your phone, tap
the menu icon in the top left, tap Skills, and then tap the
“Your Skills” link on the top right.

You’re presented with an alphabetically sorted list of all
the skills you’ve enabled on your Amazon Echo device,
and because you named the skill “Alexa Demo,” it should
be at the top (or really close.) Go ahead and tap the skill
and take a look at the detail page for the skill. It should
already be enabled, but if not, just tap the big green En-
able Skill button.

You’ll notice that there’s no icon and no description be-
cause you haven’t added those yet. Also, nobody but you
can see this skill, because it isn’t published, but it’ll work
on your device, so go ahead and give it a try!

If you have an Amazon Echo
device, say this: “Alexa Tell
AlexaDemo Hello” and Alexa
responds with “Welcome
to the Alexa demo.”

{
 "session": {
 "sessionId": "SessionId.6b864bd4-2f30-4873-a2c3-a34b23827903",
 "application": {
 "applicationId": "amzn1.ask.skill.f980f2fd-6573-4c33-a4cc-
 c8a8aa5e6fc4"
 },
 "attributes": {},
 "user": {
 "userId": "amzn1.ask.account.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 },
 "new": true
 },
 "request": {
 "type": "IntentRequest",
 "requestId": "EdwRequestId.b8c8bfc8-f03a-4b1f-91d1-
 0649514dd796",
 "locale": "en-US",
 "timestamp": "2016-12-18T21:48:59Z",
 "intent": {
 "name": "HelloWorldIntent",
 "slots": {}
 }
 },
 "version": "1.0"
}

Listing 3: Service Simulator Service Request

Figure 12: The SSL Certificate Tab

34 Programming Alexa Skills for the Amazon Echo

codemag.com

Figure 13: The Test Tab

Imagine having Alexa in your home, connected to a
smart device hub that controls your lights, appliances,
and home security, combined with a connected device in
your car that responds to voice commands. Being able
to say “Alexa Turn Off The Coffee Pot” while inside your
house is pretty neat. Realizing that you left it on when
you’re 10 miles down the road and being able to say it in
your car—and have Alexa turn off the pot—is a whole new
level of awesome.

Additional Skills
In addition to the Custom Alexa Skill you just created,
there are other APIs supported by Alexa that are worth
investigating:

• The Smart Home Skill API: This API allows you
to add skills to Alexa that include controlling any
cloud connected device, such as the lighting, ther-
mostat, appliances, smart plugs, and security fea-
tures of your home. You can read more about this
API at http://amzn.to/2hjAx1Z.

• The Flash Briefing Skill API: This API lets you add
your own audio content feed to the Alexa Flash
Briefing options via RSS. (If you have an Alexa-sup-
ported device and you haven’t listened to a Flash
Briefing yet, just say “Alexa give me my Flash Brief-
ing” to get an idea of why this is useful.) Additional
information about this API is available at http://
amzn.to/2gUCbpY.

35Programming Alexa Skills for the Amazon Echo

codemag.com

If you’re creating things that push the boundaries of
voice technologies, whether it’s software or hardware,
you should take a look at The Alexa Fund (at https://
developer.amazon.com/alexa-fund).

• The List Skill API: This is a new addition to the ASK
and allows you to teach Alexa how to interface di-
rectly with your list applications, such as the Shop-
ping List or To-Do List, so you don’t have to build
out a separate voice interaction model. You can
learn all about this API at http://amzn.to/2hjD5gq.

The Alexa Fund
The Alexa Fund provides up to $100 million in venture
capital funding to fuel voice technology innovation.
Amazon and a lot of other investors are betting big that
human voice interaction will drive technology adoption
in ways we have yet to even imagine.

In addition to funding, they also offer services such as
product incubation, providing advice and resources to
deliver your product to market.

Figure 14: The Privacy & Compliance Tab

Realizing that you left
the coffee pot on when you’re
10 miles down the road and
telling Alexa to turn it off
for you is a whole new level
of awesome.

 Chris G. Williams

36 Programming Alexa Skills for the Amazon Echo

38 codemag.comCreating iMessages Apps

ONLINE QUICK ID 1703081

Creating iMessages Apps
Apple introduced iMessages in June 2011 as the default messaging platform for iOS users; it’s served well for Apple since
then and now has millions of users. Unfortunately, iOS developers were never allowed to plug into the iMessages system and
customize it according to their needs. This all changed in 2016 when Apple introduced the Messages framework in iOS 10,

allowing developers to customize the look and feel of
iMessages in the form of stickers and custom iMessages
extensions using Swift 3.0.

Today, there are thousands of stickers and iMessages
apps in the App Store and some even made it to the top
ten paid apps. In this article, you’re going to build cou-
ple of iMessages apps and look at the different methods
and purposes for each approach.

Sticker Pack Apps
Sticker Pack Apps can be created in less than 30 sec-
onds because they’re code free, meaning that they can
be developed and published without writing a single line
of code. Xcode 8 provides a new template for creating
Sticker Pack Applications, as shown in Figure 1.

Once you select the Sticker Pack Application template,
Xcode 8 automatically creates the default starter project.
An important thing to notice is that the Sticker Pack Ap-
plication project doesn’t contain storyboard, view con-
trollers, or even application delegate files. That’s because
Sticker Pack Applications are 100% code-free.

Select the Stickers.xcstickers assets and in the middle
pane, select the Sticker Pack folder. This updates the

right pane, which displays the number of stickers in the
application. Because you haven’t added any stickers to
the application yet, it says No Stickers—Drag and drop
images to add new stickers.

At this point, all you have to do is drag and drop the
images into the designated area and you’re done. I told
you: This is going to take less than 30 seconds!

Figure 3 shows the Sticker Pack Application after I’ve
dropped several awesome smiley face emojis into the
sticker assets folder.

At this point, you’re done with the app! You can run the
app and witness your awesome work.

By default, the Sticker Pack Applications displays the
stickers in medium sticker-size format. You can adjust
the size using the attributes inspector, as shown in
Figure 5.

If you run the app again, you’ll notice that the stick-
ers are much bigger in size. For the larger size stickers,
make sure that your stickers’ dimensions are greater
than 500 x 500 points. The stickers with large sizes cre-
ate a very distinctive and unique effect, as shown in
Figure 6.

Mohammad Azam
azamsharp@gmail.com
www.azamsharp.com
@azamsharp

Mohammad Azam works as
an iOS Instructor at The Iron
Yard. Azam trains and educates
professionals on how to develop
next generation iOS applica-
tions using Objective-C and
Swift. Before joining The Iron
Yard Azam worked as a Senior
Mobile Developer at Blinds.
com. He’s been developing iOS
applications since 2010 and has
worked on more applications
than he can remember.

Azam’s current app, Vegetable
Tree—Gardening Guide, is
considered the best vegetable
gardening app on the app store
and was featured by Apple in
2013. He’s a frequent speaker at
Houston Tech Fest and Houston
iPhone Meetup.

When not programming, Azam
likes to spend his time with his
beautiful family and planning
for his next trip to the unknown
corners of the world.

Figure 1: Sticker Pack Application Template in Xcode 8

39codemag.com Creating iMessages Apps

This view controller inherits from MSMessagesAppView-
Controller and serves as the root controller for the iMes-
sages applications. In order to display a custom view
controller, you need to inject the controller inside the
MSMessagesAppViewController using view controller con-
tainment.

Even though sticker applications are quick and easy to
create and are great for sharing funny emojis, pictures,
GIF images, etc., they’re quite limited in nature. The limi-
tation comes from the fact that sticker applications don’t
have any code. This means that sticker pack applications
can’t integrate with ad networks, in-app purchases or
even transition to different screens.

Don’t feel upset that you can create the same sticker
application using code. Instead of choosing the sticker
pack application project template, you use the iMes-
sages application project template. In the next section,
I’ll demonstrate how you can write a complete iMessages
application that allows the user to keep track of RSVP
confirmations.

Creating the RSVP iMessages
Application
The real power of the new iOS 10 Messages framework
comes from the iMessages applications. Just like sticker
pack applications, iMessages applications run under the
umbrella of the Messages framework app but provide a lot
more flexibility for customization.

In this section, I’m going to create a very practical iMes-
sages application for managing RSVPs. Consider a sce-
nario where you’re throwing a birthday party and you
want an RSVP count for the number of guests. Instead
of sending and tracking hundreds of RSVPs on your Mes-
sages app, wouldn’t it be great if you could simply get
the count of people who’re interested in attending the
event? This saves you from the headache of counting
the confirmations yourself and also affects the number
of pizzas you order for the party. Nobody likes to waste
pizza and cake, am I right?

Messages App Presentation Styles
Before jumping into the technical details of the RSVP
iMessages app, I’ll talk about the different presentation
styles of the iMessages application. The iMessages app
comes with two presentation styles: compact and ex-
panded.

• Compact: The user selects the extension in the app
drawer: The Messages app launches the extension
using the compact style.

• Expanded: The user selects a message in the tran-
script that represents one of the extension’s MS-
Message objects: The Messages app launches the
extension using the expanded style.

Adding Child View Controllers
When creating iMessages applications, Xcode automati-
cally adds a default view controller on the storyboard.

Figure 2: Xcode 8 Stickers Pane Area for Sticker Pack applications

Sticker Pack applications allow
the designers to use their
creative skills to step into
the arena of app development
without having to write
a single line of code.

Figure 3: Displaying a list of emojis as part of the Sticker Pack App

40 codemag.comCreating iMessages Apps

Because the RSVP app requires several screens, it’s a
good idea to separate the functionality of each screen
into a separate view controller. This technique allows you
to follow the single responsibility principles and helps
you write more maintainable and readable code. Figure 7
shows the overall user interface architecture of the app.

You can see that:
• The CompactViewController is displayed in the

compact mode when the application is launched.
• The CreateRSVPViewController allows the user

to create a new RSVP and enter the details of the
event.

• The SelectionViewController allows the user to re-
spond to the RSVP request.

The first step is to add the CompactViewController to
the MessagesViewController using the view controller
containment techniques. I’ve created a custom function
that‘s responsible for adding and removing child view
controllers. Listing 1 shows the complete implementa-
tion of the presentViewController function.

Depending on the presentation style, the presentView-
Controller function injects the correct controller into
the MessagesViewController. The instantiateRSVPCom-
pactViewController and instantiateCreateRSVPView-
Controller functions are responsible for instantiating
the controllers based on their storyboard Identifiers.
Listing 2 shows the instantiate functions implementa-
tion.

Run the app and you’ll notice that the RSVPCompact-
ViewController is injected into the MessagesViewCon-

Figure 4: Sticker Pack App running in the iPhone simulator

Figure 5: Adjusting the size of the stickers icons Figure 6: Emoji King App with enormously huge emojis.

41Title articlecodemag.com

42 codemag.comCreating iMessages Apps

troller and is displayed in the compact view due to its
presentation style. If you press the expand button, the
presentViewController is triggered again and CreateRS-
VPViewController is injected into the MessagesViewCon-
troller. Figure 3 shows this in action.

The communication between the child view control-
lers and the parent view controller is performed using
protocols and delegates. The CompactRSVPViewCon-
troller exposes a protocol that can be implemented by
the delegate classes. The implementation of the instan-
tiateRSVPCompactViewController function already set its
delegates, and are notified when any protocol function
is triggered. The protocol CompactRSVPViewController
delegate defines only a single function called rsvpCom-
pactViewControllercreateRSVP. The function doesn’t take
any parameters and it doesn’t return any parameters. The
only purpose of this delegate method is to transfer the
control back to the MessagesViewController, as can be
seen in the following snippet.

protocol RSVPCompactViewControllerDelegate :
class {

 func rsvpCompactViewControllercreateRSVP()

}

The MessagesViewController conforms to the RSVP-
CompactViewControllerDelegate and provides a custom
implementation for the rsvpCompactViewControllercreat-
eRSVP function, as shown in the next snippet. Figure 7: User Interface Layout of the iMessages RSVP Application

private func presentViewController
(with conversation:MSConversation
, for presentationStyle :
MSMessagesAppPresentationStyle) {

var controller :UIViewController!

if presentationStyle == .compact {

controller = instantiateRSVPCompactViewController()

} else {

controller = instantiateCreateRSVPViewController()

}

//Remove any existing child controllers.
for child in childViewControllers {
child.willMove(toParentViewController: nil)
child.view.removeFromSuperview()

child.removeFromParentViewController()
}

addChildViewController(controller)

controller.view.frame = self.view.bounds
controller.view.
translatesAutoresizingMaskIntoConstraints
 = false
 self.view.addSubview(controller.view)

controller.view.leftAnchor.constraint(equalTo:
view.leftAnchor).isActive = true
 controller.view.rightAnchor.constraint(equalTo:
view.rightAnchor).isActive = true
 controller.view.topAnchor.constraint(equalTo:
view.topAnchor).isActive = true
 controller.view.bottomAnchor.constraint(equalTo:
view.bottomAnchor).isActive = true

controller.didMove(toParentViewController: self)
}

Listing 1: A generic function to inject designated view controller into the MSMessagesAppViewController

Luckily, the MSMessages
class allows you to send
customized messages

43codemag.com Creating iMessages Apps

Customizing Messages
Once the user fills in the RSVP description, you need to
communicate that to the other recipient in the form of
a message. The Messages Framework provides multiple
ways of sending messages. A message can be sent as a
plain text message or a customizable MSMessage. The
next snippet shows an approach where a plain text mes-
sage is sent as an RSVP invitation.

func createRSVPViewControllerDidCreatedRSVP
(rsvp: RSVP) {

func rsvpCompactViewControllercreateRSVP() {

 requestPresentationStyle(.expanded)
 }

As you can see, the rsvpCompactViewControllercreat-
eRSVP simply requests the expanded presentation style,
which launches the CreateRSVPViewController. The re-
questPresentationStyle function invokes the didTransi-
tion function, which in turn calls the presentViewCon-
troller function and selects the correct controller de-
pending on the passed presentation style.

Figure 8: iMessages compact and expanded states

private func
 instantiateCreateRSVPViewController()
 -> UIViewController {

guard let controller = self.storyboard?
.instantiateViewController
(withIdentifier: "CreateRSVPViewController")
 as? CreateRSVPViewController else {
fatalError("CreateRSVPViewController not found")
}

controller.delegate = self
return controller
}

private func instantiateRSVPCompactViewController()
 -> UIViewController {

guard let controller = self.storyboard?
.instantiateViewController
(withIdentifier: "RSVPCompactViewController") as?
 RSVPCompactViewController else {
fatalError("RSVPCompactViewController not found")
}

controller.delegate = self
return controller
}

Listing 2: Instantiating the Child Controllers

44 codemag.comCreating iMessages Apps

It’s pretty simple! But it also doesn’t capture any enthu-
siasm and excitement for the party. Luckily, the MSMes-
sages class allows you to send customized messages.
Listing 3 shows the implementation of the composeMes-
sage function, which creates a MSMessage class.

The composeMessage function takes in an object of type
RSVP class and generates and returns an instance of the MS-
Message class. The MSMessageTemplateLayout is responsible
for customizing the look and feel of the message. I assigned
an image to the layout that serves as the background image
of the message. I also changed the caption of the message
through the template layout, which allowed me to show the
text of the invitation. Figure 10 shows the result in action.

This definitely looks much better, and I’d bet that more
people are going to RSVP YES for the party due to the
appealing appearance of the message.

 requestPresentationStyle(.compact)

 self.activeConversation?.insertText(rsvp.title,
 completionHandler: nil)

 }

The result is shown in Figure 9.

Figure 9: Use the iMessages App to send a simple text message. Figure 10: Message custom layout

Apple simulator doesn’t provide
the functionality to send group
messages nor does it allow you to
 add custom Messages accounts.

private func composeMessage(rsvp :RSVP) ->
 MSMessage {

let message = MSMessage()
let components = NSURLComponents()
message.url = components.url!

let layout = MSMessageTemplateLayout()
layout.image = UIImage(named: "partyballoons.jpg")
layout.caption = rsvp.title
layout.subcaption = "Yes Count: \(rsvp.yes)"
layout.trailingSubcaption = "No Count:\(rsvp.no)"

message.layout = layout
return message
}

Listing 3: Function to create a message with custom layout

45Title articlecodemag.com

46 codemag.comCreating iMessages Apps

message=Are%20you%20coming%20to%20my%20
party&yesCount=54&noCount=3

The query string contains three pieces of information in
pairs. Each pair is identified by a key and a value. Here’s
the breakdown of the message URL:

• message: The actual text of the invitation
• yesCount: The number of people who replied yes
• noCount: The number of people who replied no

Maintaining Sessions Between
Participants
In order to update the RSVP count, you need to main-
tain the session between the participants. This can be
accomplished by using the URL property of the MSMes-
sage class. The URL property can hold query string data
that can represent the information in pairs. The next
snippet shows the query string to create for the appli-
cation.

private func composeMessage(rsvp :RSVP)
 -> MSMessage {

let session = self.activeConversation?
.selectedMessage?.session

let message = MSMessage(session: session
 ?? MSSession())

let components = NSURLComponents()

components.queryItems = [URLQueryItem
(name: "title", value:
rsvp.title),URLQueryItem
(name:"yesCount",value:"\(rsvp.yes)"),

URLQueryItem(name:"noCount",value:"\(rsvp.no)")]

message.url = components.url!

let layout = MSMessageTemplateLayout()
layout.image = UIImage(named: "partyballoons.jpg")
layout.caption = rsvp.title
layout.subcaption = "Yes Count: \(rsvp.yes)"
layout.trailingSubcaption = "No Count:\(rsvp.no)"

message.layout = layout

return message

}

Listing 4: Compose Function with Sharing Data Through URL

Figure 11: RSVP confirmation screen Figure 12: Message updated with RSVP count

47codemag.com Creating iMessages Apps

Listing 4 shows the implementation of the composeMes-
sage function, which adds the query parameters to the
message.

The NSURLComponents class is responsible for creating
the query string in a designated format. Finally, you as-
sign the newly generated URL to the message’s URL prop-
erty. Now when a message is added to the active con-
versation, it has the underlying query string part of the
URL property. Next, you need to add a view that displays
the text of the invitation and also to accept or reject the
invitation.

The RSVPSelectionViewController is responsible for pro-
viding the user with options to either accept or reject
the invitation. The RSVPSelectionViewController consists
of two buttons, one for YES and the other one for NO, as
shown in Figure 11.

The RSVP title is passed to the RSVPSelectionViewCon-
troller using the message’s URL property, where it can
be decomposed into an object and then displayed in the
view controller. Finally, the user is given the opportu-
nity to accept or reject the invitation by pressing a but-
ton. The button, when pressed, increments the yes or
no count and then appends a new message to the active
conversation. The result is shown in Figure 12.

Conclusion
Apple’s inclusion of the Messages framework has opened
doors for creating a new category of applications. Apart
from the stickers apps, iMessages apps have become an
integral part of Apple’s echo system, allowing you to
create a new form of communication medium for your
users. The Messages framework has allowed developers
to extend the existing iOS app to include the messages
capability.

You can’t modify the original
message, but you can append
to it by using a shared session
between participants.

SPONSORED SIDEBAR:

Ramp up with CODE

Are you stuck at project
roadblocks? CODE Training
offers a popular 20-Hour
Introductory Mentoring
Service to help you get
moving again. You get 20
hours of full access to a CODE
team member for help on any
development project, which is
time that can be used for one-
on-one mentoring or to give
your project the push it needs
to get started. To find out
more about this offer, email
info@codemag.com
and set up your time with a
CODE specialist today!

 Mohammad Azam

48 codemag.com

ONLINE QUICK ID 1703051

Accessing Your Data with F# Type Providers

Accessing Your Data with
F# Type Providers
In the last issue (January/February 2017), I covered how easy it is to work with F# type providers specifically for data science.
This time, I’ll back up a little and show you just how easy it is to simply access (and still work with!) most data that you’ll
come across. You’ll see examples for accessing XML, JSON, and APIs that use the new Swagger type provider. Next issue,

I’ll write an entire article covering the options for SQL
Server, so get ready!

XML Type Provider
Working with XML is super easy when you have the XML
type provider on hand. I happen to have a data set that
shows the Powerball winning lottery numbers for the
State of New York Lottery from February 2010 through
January 2017. Let’s see how the most common numbers
chosen in each month differ. First, because it’s a script
file, you’ll need to include your references and open
statements. To use the XML type provider, you’ll need
FSharp.Data, as well as System.Xml.Linq, because the
type provider makes use of XDocument internally. I’m
also using Microsoft.VisualBasic, because it has a few
nice Date functions that the other languages don’t
have.

#r "../packages/FSharp.Data/lib/FSharp.Data.dll"
#r "System.Xml.Linq.dll"
#r "Microsoft.VisualBasic.dll"
open FSharp.Data
open Microsoft.VisualBasic

Once these are in place, you connect to the data. It’s a
quick two lines: you simply tell the type provider where
the data can be found and then call GetSample(). You
could also have used a document that’s an example of
the data and then used the Parse method on the full
data.

type Names = XmlProvider<"../numbers.xml">

let names = Names.GetSample()

That’s it! You’re ready to use the data, which has the fol-
lowing form:

<row _id="931"
 _uuid="ABE7162C-2AB8-4CF1-B7DD-00D473BC7960"
 _position="931"
 _address="http://data.ny.gov/resource/931">
 <draw_date>2017-01-04T00:00:00</draw_date>
 <winning_numbers>
 16 17 29 41 42 04
 </winning_numbers>
 <multiplier>3</multiplier>
</row>

Now, check out Figure 1, and note how the type provider
gives you that data.

It’s not clear from Figure 1 or from the data, but the
winning numbers are returned all together as a string.
Before you can do much with them, you’ll need to parse
them into an array of numbers. This is easily done by
splitting the string and converting each result to an in-
teger, like so:

let parseNumbers (nums:string) =
 nums.Split(' ')
 |> Array.map (fun n -> n |> int)

Now that you’ve created the parseNumbers function, it’s
time to start forming your results. Let’s call this results.
You can request all the rows of the data using names.
Rows, and then use an Array.map to select only the data
you’re looking for from the XML file: the month that the
numbers were drawn and the numbers themselves parsed
into an array. Once that’s in place, you can group by the
month and then sort so they’re in the correct order.

let results =
 names.Rows
 |> Array.map
 (fun r ->

Rachel Reese
rachelree.se
twitter.com/rachelreese

Rachel Reese is a long-time
software engineer and math
geek who can often be found
talking to random strangers
about the joys of functional
programming and F#.
She holds a Bachelor’s of
Science in Math and Physics
from Stony Brook University,
and has a habit of starting user
groups: so far, in Hoboken,
NJ (Pluralsight Study Group),
Nashville, TN (@NashFSharp)
and Burlington, VT (@VTFun).
She’s also on the F# Software
Foundation board, the .NET
Foundation board, and is an
ASPInsider, an F# MVP,
a Xamarin MVP, a community
enthusiast, one of the founding
@lambdaladies, and a Rachii.
You can find her on twitter,
@rachelreese, or on her blog:
rachelree.se.

Figure 1: Using IntelliSense to explore the NY State lottery numbers XML data file

49codemag.com Accessing Your Data with F# Type Providers

 (DateAndTime.MonthName(m),
 (combineNumbers data).[0..2]))

The final result looks like this!

val results : (string * int []) [] =
 [|
 ("January", [|47; 19; 28|]);
 ("February", [|17; 11; 36|]);
 ("March", [|14; 8; 12|]);
 ("April", [|33; 29; 39|]);
 ("May", [|23; 31; 9|]);
 ("June", [|22; 33; 18|]);
 ("July", [|3; 11; 38|]);
 ("August", [|12; 28; 4|]);
 ("September", [|17; 22; 39|]);
 ("October", [|20; 10; 1|]);
 ("November", [|17; 37; 5|]);
 ("December", [|10; 14; 19|])
 |]

JSON Type Provider
The JSON type provider is similar to the XML type provider.
Here, too, you can point the type provider to a full data set,
an example data set, or a URL that returns the results in JSON.
This time, I’ll show an example of making a call to an API that
returns JSON. I’ll use the Broadband Speed Test API to get
some state averages for download speeds for a few different
places (libraries, home, mobile, etc.) and then compare those
to the national averages. Finally, I’ll chart the numbers.

You’ve always got to start with your references and open
statements. In this case, you need to load the FsLab
scripts, and reference the GoogleCharts dll. You also
need to open the GoogleCharts library.

#load "../packages/FsLab/FsLab.fsx"
#r "XPlot.GoogleCharts.dll"

open XPlot.GoogleCharts

Next, you can set up the two type providers. You’ll need
two separate instances because you’re making two sepa-

 (r.DrawDate.Month,
 parseNumbers r.WinningNumbers))
 |> Array.groupBy (fun (m, n) -> m)
 |> Array.sort

This gives you a result like Listing 1.

However, now you need to clean up and combine all the
sub-arrays so that you can more meaningfully interact
with your data. Let’s create a combineNumbers function
to handle them. I’ll walk through it line-by-line for some
clarity.

let combineNumbers data =
 data
 |> Array.collect
 (fun (month, nums) -> nums)
 |> Array.countBy id
 |> Array.sortByDescending
 (fun (num, count) -> count)
 |> Array.map (fun (n,c) -> n)

I started by sending the data to an Array.collect. This
runs the function on each item in the array and then
collects and concatenates the resulting sub-arrays. This
removes the extra month information and gathers all the
lottery numbers into one large array.

 data
 |> Array.collect
 (fun (month, nums) -> nums)

Next, I count the numbers. Because there’s only one term
per item in the area, there’s no need to use an explicit
countBy function; id will suffice. The result here is an ar-
ray of tuples: the count and the lottery number.

 |> Array.countBy id

Next, I sort by the count to return the highest chosen
numbers in that month.

 |> Array.sortByDescending
 (fun (num, count) -> count)

Finally, I remove the count and return only the numbers.

 |> Array.map (fun (n,c) -> n)

Now I can take the combineNumbers function and add
another step to the results computation. In this last
step, I’ll map the month and numbers to a proper month
name string, and I’ll use the combineNumbers function
to clean up the sub arrays and take just the top three
lottery numbers that were returned.

let results =
 names.Rows
 |> Array.map
 (fun r ->
 (r.DrawDate.Month,
 parseNumbers r.WinningNumbers))
 |> Array.groupBy (fun (m, n) -> m)
 |> Array.sort
 |> Array.map
 (fun (m, data) ->

val results : (int * (int * int []) []) [] =
 [|
 (1,
 [|(1, [|18; 22; 37; 47; 54; 36|]);
 (1, [|22; 26; 32; 38; 40; 7|]);
 ...
 |]);
 (2,
 [|(2, [|17; 22; 36; 37; 52; 24|]);
 (2, [|14; 22; 52; 54; 59; 4|]);
 ...
 |]);
 (3,
 [|(3, [|7; 9; 14; 45; 49; 23|]);
 (3, [|10; 29; 33; 41; 59; 15|]);
 ...
 |]);
 ...
 ...
 |]

Listing 1: Results of lottery data after parsing numbers, grouping by month, and sorting.

50 codemag.com

need: AccessingFrom, and MedianDownload. Check out
Figure 2 to see all the options available.

let nationResults =
 bbNation.Results
 |> Array.map
 (fun a -> (a.AccessingFrom, a.MedianDownload))

Next, you’ll set up the state results in a similar manner,
as in the next snippet. This time, you’ll need to return
the GeographyName as well as the AccessingFrom and
MedianDownload, and then, because the goal is to find
the percent difference in the average download speed as
compared to the national average download speed, you’ll
want to group by state.

 bbStates.Results
 |> Array.map
 (fun a ->
 (a.GeographyName,
 a.AccessingFrom,
 a.MedianDownload))

rate calls. I’ve chosen to call mine BroadbandStates and
BroadbandNation. Then you call GetSample(), just like
the XML type provider, and you’re ready to go.

let statesUrl =
 "https://www.broadbandmap.gov/broadbandmap/" +
 "speedtest/state/names/arizona,maine," +
 "wyoming,california,tennessee?format=json"

let nationUrl =
 "https://www.broadbandmap.gov/broadbandmap/" +
 "speedtest/nation?format=json"

type BroadbandStates = JsonProvider<statesUrl>
type BroadbandNation = JsonProvider<nationUrl>

let bbStates = BroadbandStates.GetSample()
let bbNation = BroadbandNation.GetSample()

Working with the national data is a little easier, so let’s
start there. You’ll need to access the results, and then
use Array.map to find the two points of data that you

val nationResults : (string * decimal) [] =
 [|("Business", 8.85742M);
 ("CC_library_school", 9.98828M);
 ("Home", 6.70215M); ("Mobile", 2.12891M);
 ("Other", 3.97627M); ("Small_Business", 4.39063M)|]

val stateResults : (string*(string*string*decimal)[])[] =
 [|("Arizona",
 [|("Arizona", "Business", 8.73516M);
 ("Arizona", "CC_library_school", 9.66016M);
 ("Arizona", "Home", 7.45703M);
 ("Arizona", "Mobile", 2.18652M);
 ("Arizona", "Other", 6.51075M);
 ("Arizona", "Small_Business", 4.30176M)|]);
 ("California",
 [|("California", "Business", 8.85303M);
 ("California", "CC_library_school", 18.33496M);
 ("California", "Home", 6.13222M);
 ("California", "Mobile", 2.58984M);
 ("California", "Other", 2.51492M);
 ("California", "Small_Business", 3.19922M)|]);

 ("Maine",
 [|("Maine", "Business", 10.89160M);
 ("Maine", "CC_library_school", 8.88086M);
 ("Maine", "Home", 5.34131M);
 ("Maine", "Mobile", 1.89844M);
 ("Maine", "Other", 4.80187M);
 ("Maine", "Small_Business", 4.35449M)|]);
 ("Tennessee",
 [|("Tennessee", "Business", 7.91162M);
 ("Tennessee", "CC_library_school", 8.63184M);
 ("Tennessee", "Home", 7.31219M);
 ("Tennessee", "Mobile", 2.42871M);
 ("Tennessee", "Other", 1.72534M);
 ("Tennessee", "Small_Business", 4.95801M)|]);
 ("Wyoming",
 [|("Wyoming", "Business", 4.32042M);
 ("Wyoming", "CC_library_school", 6.40321M);
 ("Wyoming", "Home", 3.86426M);
 ("Wyoming", "Mobile", 1.20020M);
 ("Wyoming", "Other", 2.28906M);
 ("Wyoming", "Small_Business", 2.59903M)|])|]

Listing 2: NationResults and StateResults data. Note that each set of state information needs to line up with the national information in order for the
Array.map2 function to work properly.

Figure 2: Using IntelliSense to explore the Broadband Speed Test API

Accessing Your Data with F# Type Providers

51codemag.com

There’s one last step to process the state data. You’ll
have an array of tuples here: a string value (the loca-
tion information), and an array of tuples that are a string
(the state) and an integer (percent difference to national
value). Let’s unzip this array, using the location infor-
mation for the labels on the chart, and use compound
assignment to set both values at once. You have, finally:

let labels, stateResults =
 bbStates.Results
 |> Array.map
 (fun a ->
 (a.GeographyName,
 a.AccessingFrom,
 a.MedianDownload))
 |> Array.groupBy
 (fun (geo, from, down) -> geo)
 |> Array.collect
 (fun (geo, data) -> findAverages data)
 |> Array.groupBy
 (fun (geo, from, down) -> from)
 |> Array.map
 (fun (from, data) -> (from, sortData data))
 |> Array.unzip

Now, to create a chart of all the data at once, you need
to specify which type of chart each group of data should
be. In this case, you’ll want all bar charts.

let series =
 ["bars"; "bars"; "bars"; "bars"; "bars"; "bars"]

Finally, let’s chart those results. I used a combo chart,
added a title, and used the series information to set each
chart up as a bar chart. I added the labels information
and a legend. Voila! See Figure 3 for the final chart.

stateResults
|> Chart.Combo
|> Chart.WithOptions
 (Options(

The WSDL Type Provider

When I give talks on type
providers, I often include a demo
of the WSDL type provider. WSDL
obviously isn’t new and cool
any more, but it was the first
type provider that I was able to
see in action and no article on
data access would be properly
complete without at least
giving it a mention. For more
information and documentation
on this type provider,
see https://msdn.microsoft.
com/en-us/visualfsharpdocs/
conceptual/wsdlservice-
type-provider-%5Bfsharp%5D

 |> Array.groupBy
 (fun (state, from, down) -> state)

After this code runs, the stateResults and nationResults
values look like Listing 2.

Next, you need a helper function to handle calculating
the averages for each state. I’ve called it findAverages.
Let’s look a little closer at that one. I take the data and
use an Array.map2, which takes two arrays as inputs and
performs a map on them, using their respective elements.
For example, generically, Array.map2 might look like this:

Array.map2
 (fun array1value array2value ->
 array1value + array2value)
 array1 array2

Or, of course, like this:

array2
|> Array.map2
 (fun array1value array2value ->
 array1value + array2value)
 array1

The arrays must be the same length and conveniently,
now each state sub-array is the same length as the array
of national data. It’s also useful here to pre-emptively
destructure the tuple and triple in each array. Your find-
Averages function will look like this:

let findAverages data =
 data
 |> Array.map2
 (fun (nfrom, ndown) (geo, sfrom, sdown) ->
 (geo, sfrom, sdown/ndown*100M |> int))
 nationResults

Once you have the averages, you want to re-group by the
location (home, office, etc.) so that you can chart the
data, and then remove the duplicated location informa-
tion. Now, let’s put this together.

 bbStates.Results
 |> Array.map
 (fun a ->
 (a.GeographyName,
 a.AccessingFrom,
 a.MedianDownload))
 |> Array.groupBy
 (fun (geo, from, down) -> geo)
 |> Array.collect
 (fun (geo, data) -> findAverages data)
 |> Array.groupBy
 (fun (geo, from, down) -> from)
 |> Array.map
 (fun (from, data) -> (from, sortData data))

In that snippet, sortData is the function that removes the
duplicated location information.

let sortData (data:(string*string*int)[]) =
 data
 |> Array.map
 (fun (geo, from, down) -> geo, down)

Figure 3: Chart of the values from the Broadband Speed Test API for Arizona, California, Maine,
Tennessee, and Wyoming download speeds in various locations

Accessing Your Data with F# Type Providers

52 codemag.com

You need to reference the SwaggerProvider, which can
be loaded with either Paket or Nuget. I also make a habit
of keeping my API keys in a separate file so that I don’t
accidentally make them public. For this bit of code, you
need to reference System.Text.RegularExpressions and
System.Threading.

#load "../packages/Swagger/SwaggerProvider.fsx"
#load "keys.fs"

open SwaggerProvider
open keys
open System.Text.RegularExpressions
open System.Threading

Next, let’s connect to the Oxford dictionary API. Using
the SwaggerProvider, it’s a matter of pointing the type
provider at the Swagger definitions for the API and creat-
ing an instance for use.

[<Literal>]let oxfordApi =
 «https://api.apis.guru/v2/specs/» +
 "oxforddictionaries.com/1.4.0/swagger.json"
type Oxford = SwaggerProvider<oxfordApi>

let oxford = Oxford()

Connecting to the New York Times API is slightly more
complicated. You need to create the same three lines of
set up, but the New York Times requires the API key to be
passed as part of the headers, so you have to use Cus-
tomizeHttpRequest to add it. After this, the two type
providers act in the same way.

[<Literal>]
let topStoriesApi=
 "https://api.apis.guru/v2/specs/" +

 title = "Download speed averages as a
 percentage of national averages",
 series = [| for typ in series ->
 Series(typ) |]))
|> Chart.WithLabels labels
|> Chart.WithLegend true

The JSON type provider is fantastic, but it does mean
that you need to set up each individual call separately.
To solve this problem, let’s take a look at the Swagger
type provider.

Swagger Type Provider
First, what is Swagger? It’s a formal specification that en-
suring that your API is documented in a human-readable
and a machine-readable way, with minimal fuss. Using
Swagger for your APIs is the new hotness right now, and
this means you can take advantage of the several APIs
that use Swagger, via the Swagger type provider. You’ll
have quick, full access to the entire API!

I’ve written up a short script that uses the New York Times
API to read their top headlines for the Travel section, and
then does a bit of processing on the words in the article
abstracts, using the Oxford dictionary API, in order to
determine how many words are used. Let’s take a look!

Much the same as in the previous examples, you need to
specifically call out your references and open statements.

{
 "status": "OK",
 "copyright":
 "Copyright (c) 2017 The New York Times Company.
 All Rights Reserved.",
 "section": "travel",
 "last_updated": "2017-01-05T13:15:06-05:00",
 "num_results": 23,
 "results": [
 {
 "section": "Travel",
 "subsection": "",
 "title": "Hotels and Resorts to Travel to in 2017",
 "abstract": "Sometimes a hotel is just a place to sleep.
 Other times, it's a destination.",
 "url": "http://www.nytimes.com/2017/01/05/travel/
 hotels-and-resorts-to-travel-to-in-2017.html",
 "byline": "By ELAINE GLUSAC",
 "item_type": "Article",
 "updated_date": "2017-01-05T01:22:18-05:00",
 "created_date": "2017-01-05T01:22:19-05:00",
 "published_date": "2017-01-05T01:22:19-05:00",
 "material_type_facet": "",
 "kicker": "",
 "des_facet": [
 "Hotels and Travel Lodgings",

 "Eco-Tourism",
 "Spas",
 "Travel and Vacations",
 "Swimming Pools"
],
 "org_facet": [],
 "per_facet": [],
 "geo_facet": [],
 "multimedia": [
 {
 "url":
 "https://static01.nyt.com/images/2017/
 01/08/travel/08LODGING1/
 08LODGING1-thumbStandard.jpg",
 "format": "Standard Thumbnail",
 "height": 75,
 "width": 75,
 "type": "image",
 "subtype": "photo",
 "caption": "New hotel on Kokomo Island, Fiji.",
 "copyright": "Small Luxury Hotels of the World"
 },
],
 "short_url": "http://nyti.ms/2j6NFrS"
 }
...

Listing 3: Resulting JSON from calling the New York Times API

Using Swagger for
your APIs is the new
hotness right now.

Accessing Your Data with F# Type Providers

53codemag.com

abstracts and then to split them up by words. This original
array has 309 items in it, so make sure that the words are
distinct. Let’s also sort the list, for good measure.

topStories.Results
 |> Array.collect (fun r -> r.Abstract.Split(‹ ‹))
 |> Array.distinct
 |> Array.sort

This returns a rather messy set of data, with punctuation,
dates, and proper nouns that aren’t going to be in the
dictionary, as you can see in Listing 4. You need to clean
this up a bit before you can make use of the Oxford API.
Let’s define a simple cleanup method, using a regular
expression to filter out any “words” that have numbers
or a few special characters. If the word doesn’t have any
of the offending characters, there might still be some as-
sociated punctuation, so it’s a good idea to remove that
as well. The return type here is an Option type, which
I’ve used in previous articles. This forces you to check
whether the data is valid before being able to use it.

let cleanup (text:string) =
 if Regex.IsMatch(text,@"[0-9''$/—]") then
 None
 else
 Some(text.Replace(",","")
 .Replace(".","")
 .Replace("?","")
 .Replace(""","")
 .Replace(""",""))

You’ll need to insert a call to your cleanup function, like so:

topStories.Results
 |> Array.collect (fun r -> r.Abstract.Split(‹ ‹))
 |> Array.choose (fun a -> cleanup a)

 "nytimes.com/top_stories/2.0.0/swagger.json"
type TimesNYC = SwaggerProvider<topStoriesApi>

let timesNYC = TimesNYC()

timesNYC.CustomizeHttpRequest <-
 fun req ->
 req.Headers.Add("api-key", keys.nytimes); req

Now that you’ve set up your connection to the APIs, it’s
time to get some data. Let’s start by finding the top sto-
ries for the “Travel” section of the paper, in JSON format.

let topStories = timesNYC.Get("travel", «json", «»)

That’s it! You’ll receive a response in JSON format similar
to Listing 3, contained in a TimesNYC.GetResponse object.
Now, check out Figure 4, and compare. The topStories value
contains an array of Result objects. For each of the results,
you have IntelliSense access to all of their properties: Ab-
stract, Byline, CreatedDate, etc. Using type providers, if you
weren’t sure in advance what the result type looked like, you
could call the API and just explore. There’s no need to guess.

The goal, again, is to count the number of unique non-prop-
er noun words used in the abstracts. You need to access the

Using type providers,
if you aren’t sure in advance
what the result type looks like,
you can call the API and
just explore.

val results : string [] =
 [|"$12"; «100,000»; «125th»; «12th»; «150th»; «200th»;
 "2017"; «2017,»; "2017."; «20th»; «350th»; «A»; «Abu»;
 "Alliance"; «America»; «America's»; "Amsterdam";
 "Auditorium."; «Austen,»; «Australia.»; «Bahamas»;
 "Beijing"; "Big"; «Canada,»; «Canadian»; «Cape»;
 "Chicago"; «Club»; «Cup»; «Dhabi,»; "Dozens"; «Every»;
 "Five"; «For»; «From»; «Glimmers»; «Go»; «Harry»;
 "Here"; «Highlands,»; «Holland»; «Hoxton»; «In»;
 "Jane"; «Jonathan»; "Like"; «Line»; «London»; «Med,»;

 "More"; «Musical»; «New»; «Other»; "Places"; «Potter»;
 "Researchers"; «Ryman»; «Saskatoon,»; «Scottish»;
 "Sometimes"; «Swift»; «Tapawingo»; "The"; «This»;
 "Town"; «Travel»; «With»; "a"; «abound»; «activities»;
 "aid"; «airline»; «airlines»; "airplane"; "airport";
 "airways"; «all»; «allowing»; «along»; «alternatives»;
 "among"; "an"; «and»; «anniversary»; «annual»; «answers»;
 "anticipating"; «apps»; "apps."; «are»; «areas»; «art»;
 "as"; «aspects»; «attempt»; «attended»; "authors";
 "author's"; «avalanches»; «balancing»; ...|]

Listing 4: First pass of words contained in the abstracts of the top travel articles. The length of this array is 213 and, clearly, it needs some cleanup.

Figure 4: Using IntelliSense to explore the New York Times Top Stories API

Accessing Your Data with F# Type Providers

54 codemag.com

 |> Array.distinct
 |> Array.sort

This helps to clean up your list of words quite a bit. You’re
down to 197 total items. But there are still some repeti-
tions. For example, the list contains both “airline” and
“airlines,” which are really the same word. This is how the
Oxford API can help you out. They provide a “Lemmatron”
call, which will lemmatize your words for you. If you’ve
not heard the term before, lemmatization replaces each
word with its most basic form, without any extra prefixes
or suffixes. So, both “airline” and “airlines” return the
more basic form, “airline.” You can still count them as
one word!

Let’s go through the code in Listing 5 line by line to cre-
ate the findLemmas function. Because you’ve already set
up your connection to the Oxford API, you just need to
make the call to the GetInflections method. This requires
you to send along the language (“en” for English), the
specific word you want to look up, and your credentials
for calling the service. Rather than setting a value for the
call and requesting the results in the next step as you did
for the New York Times, it’s easy enough to define the
value as including the step into Results from the start.
You’re also starting a try-with block (similar to a try-
catch block in C#) that you’ll complete later.

let findLemmas word =
 try
 oxford.GetInflections(
 "en",
 word,
 keys.oxfordId,
 keys.oxfordKey)
 .Results

The Oxford API returns an array that’s perfect to send
through a pipeline. First, you want to map each result
to the interior array of lexical entries. This returns an
array because one spelling might mean several different
things, even different types of speech. The API returns
information for each one. By using Array.collect, the
result type is an array, rather than an array of arrays,
because it concatenates the resulting arrays.

 |> Array.collect (fun r -> r.LexicalEntries)

Next, let’s filter the proper nouns.

 |> Array.filter
 (fun l ->
 l.GrammaticalFeatures.[0].Text <> "Proper")

Now it’s time for the Oxford API to reveal whether the
word is in its most basic form or not by calling Inflection-
Of. An inflection is a word that contains, for example,
a different tense, person, or case, than the most basic
form. This tells you what your word is an inflection of.

 |> Array.collect (fun l -> l.InflectionOf)

Next, InflectionOf returns both an ID and text, so you
should take the ID (which is the lemmatized word) for
each of the lexical entries that were returned. Again, you
want to use an Option type to force a check for null data.

 |> Array.map (fun l -> Some(l.Id))

Finally, you return the first item in the array.

 |> Array.head

Now, it’s time to complete your try-with block. In this
case, it’s easiest to drop every word where there’s a prob-
lem, so you blanket catch all exceptions and return None.

 with
 | ex -> None

Now, you just need to add a call to your findLemmas
function, like so:

topStories.Results
 |> Array.collect (fun r -> r.Abstract.Split(‹ ‹))
 |> Array.choose (fun a -> cleanup a)
 |> Array.distinct
 |> Array.sort
 |> Array.map (fun w -> findLemmas w)

There’s one problem in calling the Oxford API. They limit
calls to 60 requests per minute. Because this code will
request way over 60 items in a few milliseconds, the API
responds by truncating the request to 60, and throwing
errors for the rest. No good! You’ll need to create one
more function, one that splits your array into chunks of
60 words, waiting a minute between sending each group.
Let’s call it splitToFindLemmas.

let splitToFindLemmas (wordArray:string[]) =
 let size = 60
 [|for start in 0..size..wordArray.Length-1 do
 if start <> 0 then Thread.Sleep 60000
 let finish =
 if start+size-1 > wordArray.Length-1 then
 wordArray.Length-1
 else

let findLemmas word =
 try
 oxford.GetInflections(
 "en",
 word,
 keys.oxfordId,
 keys.oxfordKey)
 .Results
 |> Array.collect (fun r -> r.LexicalEntries)

 |> Array.filter
 (fun l ->
 l.GrammaticalFeatures.[0].Text <> "Proper")
 |> Array.collect (fun l -> l.InflectionOf)
 |> Array.map (fun l -> Some(l.Id))
 |> Array.head
 with
 | ex -> None

Listing 5: The findLemmas function

Accessing Your Data with F# Type Providers

55codemag.com

 start+size-1
 yield
 wordArray.[start..finish]
 |> Array.choose (fun w -> findLemmas w)|]
 |> Array.concat

Let’s look at this line by line again, starting with the
declaration. You might have noticed that I needed to de-
clare the type of the incoming parameter. F# has type
inference, but every now and then it needs a little push.
I found that in this set of code, I needed to specifically
declare this type. There also tend to be two camps of F#
programmers: Those who declare all types for clarity and
those who omit as many types as possible for concise-
ness. Both are good options, I just happen to side with
#TeamConcise. If you side with #TeamClarity, this is how
you set up your declarations.

let splitToFindLemmas (wordArray:string[]) =

Next, I declare a size value. It’s not necessary, but it
helps keep the code a little cleaner, because you refer
back to it a few times.

 let size = 60

Most of the rest of the code is an array comprehension
that is started with this next line. I’m declaring a value,
start, which runs from 0 to the last item in the array,
with steps determined by size, which is, in this case, 60.

 [| for start in 0..size..wordArray.Length-1 do

Next, a quick check. You need to sleep for a minute be-
tween each call, but there’s no need to sleep for the first
one. In F#, everything is an expression, and all paths
of an if statement need to return the same type. In this
case, you don’t need an else statement because Thread.
Sleep returns unit().

 if start <> 0 then Thread.Sleep 60000

Next up, I set up a finish value, which is the lesser of the
array’s upper bound or the next step.

 let finish =
 if start+size-1 > wordArray.Length-1 then
 wordArray.Length-1
 else
 start+size-1

Finishing off the array comprehension, I yield a slice of
the array from the start value to the finish value and
then call the findLemmas function for each of the words
in that slice.

 yield
 wordArray.[start..finish]
 |> Array.choose (fun w -> findLemmas w)|]

Finally, I concatenate each of the slices, so that I only
return one array.

 |> Array.concat

Now that that’s all sorted, you return to your topStories
pipeline and can add a quick call to sortToFindLemmas
and another call to Array.distinct to remove the dupli-
cates that lemmatization has created, and you’re all fin-
ished! You have a final count of 104 unique words used in
travel abstracts in the New York Times’ top stories.

topStories.Results
 |> Array.collect (fun r -> r.Abstract.Split(‹ ‹))
 |> Array.choose (fun a -> cleanup a)
 |> Array.distinct
 |> Array.sort
 |> sortToFindLemmas
 |> Array.distinct

Where to Learn More
Many of the type providers that I shared with you today
are available as part of the FSharp.Data project: XML,
HTML, and JSON. You can find more information and
documentation about them here: https://github.com/
fsharp/FSharp.Data. The Swagger type provider has also
been open sourced, and more information is available
here: http://fsprojects.github.io/SwaggerProvider/.

Because this code requests
way more than 60 items in
a few milliseconds, the API
responds by truncating the
request to 60, and throwing
errors for the rest. No good!

 Rachel Reese

Accessing Your Data with F# Type Providers

56 codemag.com

ONLINE QUICK ID 1703091

How to Know Your Team is Productive and Delivering Quality

How to Know Your Team is
Productive and Delivering Quality
Every software team that takes pride in its work likes to believe that it’s delivering high quality with high productivity. It’s easy
to say that a team is highly productive, and anyone can claim that the software he produces is of high quality. But our industry
hasn’t adopted clear metrics for either quality or productivity.

The industry certainly has adequate research to define
and report these metrics, but most software leaders ei-
ther don’t know about the research or haven’t applied it.
This article covers:

• Estimating a team’s current throughput
• Tracking defect removals
• Crafting a high-quality development process
• Measuring productivity and quality

Estimating Current Productivity
and Quality
With any of the major software project tracking tools, you
can analyze the work as it moves through the system and
gain a good understanding of the productivity and quality
the team is delivering. For example, Visual Studio Team
Services (my instance is at https://clearmeasure.visualstu-
dio.com/) supports a process where work moves through
various stages until the work is marked as complete.

This article uses a sample software department with ano-
nymized data to illustrate a technique for measurement.
By analyzing the historical work tracked across multiple
projects, we’ve been able to produce results that can be
very useful to software leaders charged with managing
teams delivering software. As we examined the available
data stored within VSTS, we conducted a quantitative
analysis that can be used to estimate the productivity
and quality that a software team produces.

Throughput Detection
To detect information about current throughput, we ex-
amined the movement of work through various existing
stages in VSTS. We observed that although each project
used differing stage (or work item status) names, we were
able to map each project to a standardized set of stages
and perform some conclusions that were meaningful. For
example, we were able to harvest some high-level infor-
mation about throughput in the software development
process. Figure 1 shows a graph by project that reveals
the relationship of the time spent progressing the work
forward to the time spent waiting on others.

In this chart, we were able to determine the scalar average
and relationship between the average lead time and the ac-
tual work time within that lead time. We found that the ac-
tual time working on an item is less than the total time the
item was in the overall process. This chart breaks up these
data by project. We can see the relative pace of work be-
tween projects but also that Proj6 has the greatest amount
of time work is waiting for someone to work on it. When

we measured this for the first time, we couldn’t draw any
conclusions immediately. Rather, we used it to verify that
we were able to begin drawing correlations and meaningful
metrics from the existing work-tracking data. This gave us
confidence that when the department implements process
changes, improved results can be tracked and reported eas-
ily in a similar fashion, and we will see a reduction of wait
times. In addition, we inferred some process differences be-
tween projects. Consider the chart in Figure 2.

In the chart in Figure 2, we can see that some projects
incurred a greater amount of work that is almost com-
pleted but waiting for release into production. For ex-
ample, Proj7, Proj2, and Proj1 all had noticeably more
work waiting on deployment than the other projects. In
fact, Proj3 appears to deploy to production as soon as
something is ready. But Proj3 also has the greatest lead
time in the “backlog” stage. In other words, there‘s a
greater percentage of items waiting to be worked at all,
but once they’re begun, they finish and deploy quickly.
As a software leader begins to measure this type of in-
formation for the first time, he sees big differences in
team and project behavior. As time progresses and vari-
ous projects and teams execute with a more consistent
workflow, the software leader sees the flow of work begin
to look more similar.

Defect Detection
In addition to identifying information about throughput of
work through the software development process, we were
also able to deduce a rudimentary quantification of defects
that were found during normal development. According to
industry research (explained below), we know that internal
software teams need to find and remove 85% of the defects
that will naturally occur during software development and
prevent them from being released to users in a production
environment. Some defects are explicitly logged in a track-
ing system and are visible through reports, but in an agile
process, there are also a statistically significant number of
defects that are caught and corrected quickly without ever
being entered as a formal defect work item in VSTS. If these
aren’t included, you might erroneously conclude that defect
removal efficiency is below 85% because of the underesti-
mation of defects that are removed before production. The
chart in Figure 3 illustrates this finding.

When we examine the history of each work item, we can
see when the status moves backward rather than the nor-
mal movement forward toward deployment to production
and being marked “done.” When the status of a work item
is reset to a previous status, we can infer that there’s a
problem. Even though a defect might not be entered in the
system, we count this as an implicit defect. This technique

Jeffrey Palermo
jeffrey@clear-measure.com
JeffreyPalermo.com
@JeffreyPalermo

Jeffrey Palermo is the CEO of
Clear Measure, an Austin-based
software engineering firm that
serves as fractional software
departments for companies
in non-technology industries.
Jeffrey has been recognized as
a Microsoft MVP for 11 consecu-
tive years and has spoken at
national conferences such as
Tech Ed, VS Live, and DevTeach.
He’s an author of several books
and articles, and loves to share
knowledge with business lead-
ers. A graduate of Texas A&M
University, an Eagle Scout, and
an Iraq war veteran, Jeffrey
likes to spend time
with his family of five out
on the motorcycle trails.

57codemag.com How to Know Your Team is Productive and Delivering Quality

to quantify caught and resolved defects that would other-
wise go unreported in metrics on a scorecard.

Constructing a Software
Development Process
There are as many implementations of the software de-
velopment lifecycle (SDLC) as there are companies that

can accommodate agile teams that move work through to
production very quickly and very often. As we can see, we
have a significant number of items (stories) that move to
External/Customer validation and then get bumped back
to Local/Team testing because of some needed rework. It’s
a good outcome to catch defects in any manner possible
rather than delivering them to the customer through pro-
duction. And using this method, among others, we’re able

Figure 1: Open time versus work time by project

Figure 2: Time by stage in each project

58 codemag.comHow to Know Your Team is Productive and Delivering Quality

With these being the essential four processes of a soft-
ware development function, each follows a very similar
model while being very different processes.

The Shape of a Process
Once you understand the shape of a process within a soft-
ware development function, you can begin to design met-
rics, Key Performance Indicators (KPIs), and a scorecard
that can be used in a consistent way across software proj-
ects and teams. The model in Figure 4 shows the shape of
a process within the software development function.

The software function has a single scorecard. The score-
card is made up of multiple KPIs, each owned by a process
within the software function. Each process has an input
and an output. The output is created, added to, and re-
fined by each key activity (or work center) in the process.
Each key process, in turn, has multiple tasks identified in
order to produce an artifact that’s added to the output of
the process. Each key activity is arranged in linear order
with the artifact of one serving as an input for the next.
Tasks create and refine the artifact, and quality control
activities identify defects to be removed before the arti-
fact is accepted in a downstream key activity.

Principles the Process
Must Implement
“The Phoenix Project,” by Gene Kim is recommended
reading for anyone seeking to implement a high-perfor-
mance software delivery process. In his book, Kim ex-
plains three key principles to put into play when imple-
menting processes in a software and IT environment. Kim
calls them the “three ways.”

The first principle is about the type and flow of work that
flows through the process. The work must take on the
following characteristics and behavior:

• Single-piece flow is ideal, but small batches are
required.

• Work batches should be structured so that they
can be completed as quickly as possible, leading to
small work intervals.

• Defects should be caught and corrected at the source
and never passed downstream in the process.

• The KPIs resulting from the work should be process
KPIs and not resulting from metrics from a single
key activity or work center. In other words, speed
of coding is not a valid metric because it’s only a
piece of a process.

The second principle is about feedback loops from activi-
ties further down the process so that future defects can
be prevented. Examples of this are:

• Immediately sending a piece of work back to the
work center responsible for the defect.

• Creating automated quality control activities to im-
mediately perform automated testing, inspections,
and static analysis in order to catch defects quickly.

The third principle aims to create a culture of continuous
improvement and mastery. For continuous improvement
of the process, this principle encourages us to:

create custom software. Some companies have additional
processes as necessary, but it’s hard to get by without
the following essential four:

• Plan: Decide what will satisfy the market and pre-
pare to dispatch desired capabilities to personnel
who can build the requested functionality.

• Build: Put ideas into released software that works
properly.

• Operate: Render the services of the software to the
users or customers and support them. Ensure sta-
bility of the functionality released to production.

• Maintain: Execute service schedules, break/fix, and
repairs to ensure that release functionality is re-
paired quickly and that preventative measures are
taken to prevent future breakdowns.

Figure 3: Defects by stage can be used to estimate quality

Figure 4: The shape of a measurable software process

59codemag.com How to Know Your Team is Productive and Delivering Quality

be low-throughput but that a low-quality process can-
not be high-throughput. Therefore, high quality must
come before high throughput, and high throughput is
not achievable without high quality, most probably be-
cause as a team generates a high level of defects, much
time is consumed just fixing problems that the process
generates.

In addition, research indicates that three quality control
activities have the best track record of helping an orga-
nization achieve 85% Defect Removal Efficiency (DRE)
when combined. There are:

• Inspections
• Testing
• Static analysis

Anything done manually is more error prone and slower
than its automated counterpart; therefore, you desire to
implement the automated form of each quality control
method if possible.

In addition to discovering and removing defects, the
data from the research of Capers Jones, as well as the
International Software Benchmarking Standards Group
(ISBSG), indicate that teams that take measures to
prevent defects end up with better overall quality and
higher throughput.

The modern concept described is technical debt. Techni-
cal debt is essentially unfinished work. It can be work
that was deferred to future releases or it can be defects
that are marked as deferred. Technical debt can also be
unmitigated risks that stay around as organizational li-
ability. Regardless of the source, increasing the quality of
a process requires technical debt to be dealt with using
the following activities in priority order:

• Identify and record the debt.
• Modify the process so that technical debt is pre-

vented in the future.
• Pay the debt down during each improvement cycle.

The final quality concern that a high-throughput process
must include is how to treat non-code defects. In “Soft-
ware Engineering Best Practices,” using data from Soft-
ware Productivity Research and Namcook, Jones shares
research that demonstrates that more defects occur be-
fore coding begins than in coding itself.

Two key metrics are critical to the measuring of quality in
a software development process:

• Defect potential: The probable number of defects
that will be found during the development of soft-
ware applications

• Defect Removal Efficiency (DRE): Refers to the
percentage of defect potentials that will be re-
moved before the software application is delivered
to its users or customers.

The above is explained in great detail by Capers Jones
in his article, Measuring Defect Potentials and Defect Re-
moval Efficiency. In fact, the research has yielded some
interesting averages for both. Table 1 illustrates what
you should expect on a typical business application in

• Create improvement cycles where the team must
make an improvement, even if very small.

• Take risks and experiment in order to find that next
additional improvement at every cycle.

• Use time when things go wrong to flow feedback
into our cycle of improvement.

Additionally, in Jez Humble’s book, “Continuous Deliv-
ery,” Humble outlines eight principles and eight practic-
es for teams that continuously deliver valuable software
to customers. The eight principles are:

1. The release process must be repeatable and reliable.
2. Automate everything.
3. If something is difficult, do it more.
4. Keep everything in source control.
5. “Done” means released.
6. Build quality in.
7. Everyone is responsible for the release process.
8. Improve continuously.

The four practices are:

• Build binaries only once.
• Deploy to each environment the same way.
• Smoke test your deployment.
• If anything fails, stop the line.

Measuring the Development
Process
Once a linear one-way process is assembled and execut-
ing, two aspects of the process to continually measure
and optimize are:

• Quality
• Throughput

Each should be measured for actuals and forecasted for
the future. In addition, these metrics can be turned into
a KPI by adding a threshold, or acceptable levels:

• Poor
• Okay
• Good

The thresholds can change periodically to align with or-
ganizational goals. Industry benchmarks and available
research can be used to inform the business decision
about where to place thresholds.

Capers Jones has probably the most comprehensive book
on software measurement and metrics available in the
industry. In his book, “Applied Software Measurement,”
he analyzes and reports on scores of software studies
across languages, platforms, project types, and method-
ologies. In addition, in another of his books “Software
Engineering Best Practices,” Jones reports on the 50
best software development practices and the 50 worst
software development practices based solely on results
from research, thereby producing a quantified listing of
practices.

Quality Control
In “Software Engineering Best Practices,” Jones re-
ports data indicating that a high-quality process can

60 codemag.comHow to Know Your Team is Productive and Delivering Quality

With these metrics, you can always know:

• Total throughput
• Work in progress at any time
• Speed of work through the process and bottlenecks

The goal is an optimal number of features exiting the pro-
cess according to the ability of downstream processes to
accept the work. And with the two supporting metrics,
you can determine optimal staffing and lead times for
work making it through the process.

Conclusion
Every software department wants to deliver quickly and
deliver a quality result. With the research available in the
industry, as well as the measurement techniques demon-
strated in this article, software leaders can begin to mea-
sure projects. If a measurement has never taken place,
the first numbers will be disappointing. But with con-
tinual process improvement, any team can achieve the
removal of 85% of potential defects before production
release and create a process that smoothly moves soft-
ware feature requests through multiple distinct stages
and on to production without bottlenecks.

the United States. With the average for defect potentials
being about five defects per function point, you should
expect about five defects for every 52-54 lines of a high-
level computer programming language.

Additional research data also reveals that formal inspec-
tions can average 65% defect removal efficiency, and
testing can only identify 30-35% of defects, but when
combining formal inspections with testing and automat-
ed static analysis, organizations can reliably achieve 85%
defect removal efficiency.

Productivity and Throughput
Productivity, from a metrics standpoint, is a measure of
how many units of work an organization pushes through
its process. It can also be called throughput. Measuring
throughput for a software project can be very similar
to measuring throughput of a factory or manufacturing
plan, and many of the same tenets of lean manufactur-
ing can apply. In a software development process, there’s
one economic measure of throughput that’s supported by
several decades of research:

• Function points per person-month
• Useful on a per project basis
• Insufficient for closely monitoring throughput

during development

Because the industry’s body of productivity data is
measured in Function Points or variations of function
points, that’s the unit available for comparing productiv-
ity across the industry. For an organization that doesn’t
count function points before building software, function
points can be estimated by backing into it using lines of
code after the software is built. Although leaving room
for some inaccuracy, this practice provides a reasonably
close approximation useful enough for comparison across
the industry’s body of research. For example, knowing
that 52-54 lines of a high-level programming language
are typically required to implement one function point of
functionality, you can back into a function point estimate
that can be used to calculate productivity per person-
month.

Although this measure allows you to create an economic
sampling perhaps once per quarter, you need some mea-
sures that can be sampled more frequently, even weekly.
For that purpose, use the following:

• Number of features exiting the process
• Number of features in the process per team member
• Number of business days on average that a feature

is in the process as well as in a stage

Defect Origin Defect Potential Removal Efficiency Defects Remaining
Requirements defects 1.00 77% 0.23

Design defects 1.25 85% 0.19

Coding defects 1.75 95% 0.09

Documentation defects 0.60 80% 0.12

Bad fixes 0.40 70% 0.12

Total 5.00 85% 0.75

Table 1: Defect research application to the United States

 Jeffrey Palermo

62 codemag.comExploring Sticker Packs with iOS 10

ONLINE QUICK ID 1703071

Exploring Sticker Packs with iOS 10
Communication is an essential part of our everyday lives and, as technology has progressed, the way we communicate
has also evolved. With the advent and rise in popularity of emojis, for instance, communication has begun to expand
beyond verbal and written forms Into something more visual. In fact, 92% of the online population uses some form of emoji

(Emogi marketing report 2015, http://www.adweek.
com/socialtimes/report-92-of-online-consumers-use-
emoji-infographic/627521).

With the release of iOS 10, Apple has created a new me-
dium for visual communication using something they call
stickers. Stickers work similarly to emojis but carry with
them additional functionality that result in a more in-
teractive experience. In this article, you’ll take a closer
look at stickers, sticker packs, and the newly accessible
iMessages App Store.

What are iOS Stickers?
With the introduction of stickers in iOS 10, users now
have a new way to express themselves within their ex-
isting iMessage conversations. Stickers are static or
animated images that can be tapped and sent in a con-
versation thread just like you would a normal emoji.
However, stickers have additional functionality baked in.
For instance, you can peel a sticker, resize or rotate it,
and place it on top of or next to message bubbles in the
conversation flow, within photos, or even other stickers.
See Figure 1 for a sample conversation using stickers.

Sticker Packs
1. Alongside the announcement of stickers, Apple also

introduced the dedicated iMessages App Store; your

one-stop-shop for applications that run as exten-
sions within the default iMessages application. Cur-
rently, two types of iMessage apps exist: Sticker Pack
and custom.

2. A Sticker Pack application is a limited-functionality
iMessage app that delivers a single grouping of stick-
ers. A custom iMessage application removes the limits
of the basic Sticker Pack template, giving you the abili-
ty to layer on additional functionality as you see fit (I’ll
cover this approach in more detail later in the article).

3. Figure 1 demonstrates what a Sticker Pack applica-
tion looks like running on the device. Notice that
the far-left screen depicts the listing of iMessage
applications currently installed on your device. The
middle screen displays what it looks like if you tap
on an installed Sticker Pack application, and the far-
right screen demonstrates a conversation using the
stickers from the pack.

4. In order to use the stickers, users interact in one of
two ways. If you tap on a sticker, it adds the sticker
to the message entry field so that you can send it
just as you would a normal emoji. However, if you
tap and hold on a sticker, it peels off of the key-
board and allows you to manipulate it and place it at
your desired location within the conversation win-
dow. Users within the conversation can tap and hold
on a sticker to see details about it, including which
iMessage app it originated from.

Jason Bender
Jason.bender@rocksaucestudios.com
www.jasonbender.me
www.twitter.com/TheCodeBender

Jason Bender is the Director
of Development for Rocksauce
Studios, an Austin, Texas-based
Mobile Design and Develop-
ment Company. He’s been
coding since 2005 in multiple
languages including Objective-
C, Java, PHP, HTML, CSS, and
JavaScript. With a primary
focus on iOS, Jason has devel-
oped dozens of applications in-
cluding a #1 ranking reference
app in the US. Jason was also
called upon by Rainn Wilson
to build an iOS application for
his wildly popular book and
YouTube channel: SoulPancake.

Figure 1: The Alamoji iMessage Sticker Pack, available for download in the iMessages AppStore, is used here to
demonstrate sticker pack functionality.

63codemag.com Exploring Sticker Packs with iOS 10

Sticker Pack Icon Guidelines

For additional details on icon
requirements for Sticker Pack
Applications, please visit:
https://developer.apple.com/
ios/human-interface-guidelines/
extensions/messaging/

Setting up Xcode

For help setting up Xcode, visit:
https://www.appcoda.com/
learnswift/get-started.html

Sticker Pack application demonstrated in Figure 1. The
right image shows a large size sticker at two to a row.

Apple also released a set of guidelines for creating the
assets you use as stickers. Each sticker should adhere to
these regulations:

• For static stickers, you must use of one of the fol-
lowing formats: PNG, APNG, GIF, JPG

• For animated stickers, you must use one of these
formats: APNG or GIF

• A single sticker must not exceed 500KB

So Easy a Caveman Could Do It
Because Sticker Pack applications are a standard iMes-
sage application type, XCode has a specialized template
for building them. This template contains everything you
need to construct and deploy a sticker pack to the iMes-
sages App Store. In fact, to build one, you don’t have to
write a single line of code. The template contains all of
the functionality, only needing you to add in your stick-
ers and the application icons.

The only thing you really need in order to build a Sticker
Pack application is the appropriately sized sticker as-
sets. It’s important to note that you’re limited in the
sizing options you have to choose from. You can choose
one of three sizes, as defined next and also depicted in
Figure 2.

• Small: 300px by 300px
• Regular: 408px x
• Large: 618px by 618px

In Figure 2, the right image depicts a small sticker size
and how the Sticker Pack template formats them four to
a row. The middle image demonstrates the formatting of
a regular size sticker at three to a row, similar to the

Figure 2: Sticker placement examples based on the size chosen, with small on the left, regular in the middle, and
large on the right.

With the introduction of
stickers in iOS 10, users can
now peel a sticker, resize it,
and place it on top of or
next to iMessage conversation
bubbles, photos, or even
other stickers.

Figure 3: Choose the Sticker Pack Application template in Xcode

64 codemag.comExploring Sticker Packs with iOS 10

than a standard iOS application icon. You can find informa-
tion relative to those sizes and the corresponding icon guide-
lines using the links provided in the sidebar of this article.

Making Your Own Sticker Pack
Now that you have a basic understanding of iOS 10 stick-
ers, let’s take a look at the process of setting up and
populating your own sticker pack application using Xcode
8.2.1 on iOS 10.2. For the purposes of this demonstra-

It’s worth noting that Apple specifically recommends PNG
and APNG formats and warns that PNGs saved in XCode
uses a 24-bit palette by default, which could translate
into larger-than-expected file sizes.

You also need to provide a set of various-sized application
icons that will represent your application across the OS.
As you might have noticed from the left screen in Figure
1, iMessage application icons are almost oval shaped. As a
result, they have different size requirements and guidelines

Figure 5: Add the proper application icon sizes to the Sticker Pack app.

Figure 4: Empty Sticker Pack Application template

65codemag.com Exploring Sticker Packs with iOS 10

Provisioning Your
Application

For more detailed information
about how to generate the
needed profiles to provision
your application, visit: https://
developer.apple.com/library/
content/documentation/
IDEs/Conceptual/
AppDistributionGuide/
MaintainingProfiles/
MaintainingProfiles.html

Advanced iMessages App
Tutorial

To learn about the endless
possibilities of custom iMessage
apps, check out this tutorial for
creating an interactive tic-tac-toe
game in iMessage http://www.
techotopia.com/index.php/An_
iOS_10_Interactive_Message_
App_Tutorial

icons, set the size of your stickers, and arrange the stick-
er order to your liking, all you have to do is build it, test
it, and deploy it.

Extending the Functionality
Although Sticker Pack Applications are simple to create,
their functionality is rather limited. For instance, what if
you want to have multiple categories of stickers, in-app
purchases, or maybe the ability to edit a custom sticker?
If you want to extend the capabilities of the default stick-
er application, you’ll have to create a custom applica-
tion using the default iMessage Application template in
Xcode. This template gives you a special MSMessagesAp-
pViewController object to serve as the entry point of the
application, but that controller is a blank slate. You don’t
get any functionality baked in from the start because
iMessage applications can be built to do any number of
things and aren’t limited to stickers. Therefore, building
additional features requires the corresponding coding
knowledge and background to do so.

Currently, you can build an iMessage App in either Objec-
tive-C or Swift. You can download Apple’s official iMes-
sage application sample at https://developer.apple.com/
library/content/samplecode/IceCreamBuilder/Introduc-
tion/Intro.html.

Wrapping Up
Over the course of this brief article, you gained a ba-
sic understanding of what iOS 10 stickers are and how
easily you can create your own sticker packs. If you’re
interested in a more complex look at stickers or iMessage
applications in general, be sure to refer to the sidebars
for this article for additional resources.

tion, I’ll assume that you have Xcode installed. If you
need assistance installing or setting up the development
IDE, check the sidebar for additional details.

Getting Started
To start, open up Xcode and select “Create a new Xcode
Project” from the Welcome modal. Once you make this se-
lection, you see a new modal resembling the one shown
in Figure 3. This modal lets you choose the starting point
for the application type you want to build. Make sure that
iOS is selected at the top of the modal, select Sticker
Pack Application, and then click Next.

Once you‘ve made your template selection, Xcode prompts
you to enter an application name and choose a team for
provisioning. Provisioning the application for submission
to the App Store is by far the most difficult part of the
process and requires a working knowledge of the same
provisioning and certificate procedures used to submit
full iOS applications. For more detailed instructions
on provisioning your Sticker Pack, refer to the sidebar.
Once you’ve filled in the appropriate details, click Next
and choose a location to save the project. When you’re
finished, Xcode launches the template you just created.
You’ll notice that the project is bare. It contains a target
and a single assets folder named Stickers.xcstickers, as
shown in Figure 4.

Drop the stickers you want to power the application tem-
plate into this assets folder. Once you’ve composed your
images, made sure that the sizes are uniform and correct,
and verified that the file types match the requirements,
you can drag the lot of them into this folder. Once you’ve
done that, Xcode arranges them in a grid format within
the asset folder’s Sticker Pack subfolder. You can drag
the icons around to re-arrange the order in which they
appear in the application.

You can tell the template what size of sticker to display
using the attributes inspector on the right-hand panel
within Xcode. Xcode can detect the size manually but it
also has rescaling functionality built in by default. That
means that if you upload a large-size icon but want to
display it as a small sticker size, you can do that. How-
ever, it’s recommended to provide the exact size that you
wish to display, as scaling is an unnecessary hit on per-
formance.

The last step is to add the application icons to the tem-
plate. Within the Stickers.xcstickers asset folder, there’s
an iMessage App Icon section. If you select that, you’ll
see a list of sizes, as shown in Figure 5. You need to cre-
ate the icons to the specifications detailed in the sidebar
of this article, and then drag each one to its appropri-
ate location in this panel. Once you add the application

Once you add the application
icons, set the size of your
stickers, and arrange the
sticker order to your liking,
all you have to do is build it,
test it, and deploy it.

 Jason Bender

66 codemag.comAzure Skyline: Building and Deploying Services to Azure with .NET Core and Docker

ONLINE QUICK ID 1703101

Azure Skyline: Building and
Deploying Services to Azure
with .NET Core and Docker
As a professional .NET developer, writing apps for Linux probably hasn’t been on your radar. Why would you even want
to? Linux is for hipsters with MacBooks who write in Java and for some inexplicable reason, prefer to work in arcane and
garishly colored command shells, right? All kidding aside, you’re probably asking where this all fits in to the corporate world in

which so many of us make our livings. Not including the
large number of potential customers who prefer a non-
Windows infrastructure, we’ll be seeing more and more of
Linux in the Microsoft-centric world and the reasons are
mainly economic. Customers with large infrastructures
need fault tolerant, scalable, secure, and inexpensive en-
vironments. In short, they need proactive, robust DevOps
without breaking the bank.

Why Linux? Hasn’t it been proven that the Total Cost of
Ownership (TCO) of Windows is less than Linux? About
four years ago, an open source project called Docker
launched and changed the IT world. The concept wasn’t
new, but the implementation was good and began to take
hold. Docker allowed us to create runtime sandboxes
called containers to deploy our apps in. Once configured
for the container, the apps ran happily without knowing
or caring about anything outside of the container. This
allowed the containers to be run on any computer. They
could be moved around, scaled out and made fault-tol-
erant by creating multiple instances behind load balanc-
ers and treating them like a commodity. Apps could be
bundled together in the same container or split up into
separate containers. Imagine a system with 50 micro-
services, each one being developed and deployed inde-
pendently. You could run all 50 on a single computer or
run one instance each on 50 computers or 50 instances
on one computer and another 50 on a second computer,
or x instances on y computers. Now imagine being able
to get any of these scenarios up and running in a couple
of hours and being able to change from one scenario to
the next in even less time. That’s pretty powerful stuff
and when you consider that each of these containers only
requires a few MB and can run in tiny amounts of memory
compared to a big, fat .NET application, you can see why
everyone’s been talking about Docker.

Until a few months ago, Docker and Linux didn’t generate
a lot of interest for .NET developers. If you couldn’t write
apps for Linux, why would you care? All of that changed
when three things happened. First, Docker worked with
Microsoft and started allowing us to host containers on
Windows 10 and Windows Server 2016. In fact, they in-
troduced two types of container hosting, one similar to
Linux and one that Linux users didn’t have. It’s based
on Hyper-V and, although much heavier in terms of re-
source requirements, provides much better isolation be-
tween containers and thus, much better security. Sec-
ond, Docker started supporting Windows Server Core and

Nano containers (on Windows Docker Host computers),
so our apps could run in Windows containers on Windows
hosts. Yes, that’s right! We can run IIS and the full ASP.
NET stack as well as other Windows software in contain-
ers now. Although Windows containers tend to be a lot
bigger and heavier than their Linux counterparts, we can
now begin to do a lot of the same DevOps tricks that
our Linux counterparts have been enjoying. We can for
example, package our websites in containers running
Windows and IIS and ASP.NET in a container and do the
same for our Web API micro-services and enjoy the ben-
efits of Docker.

Then, there’s that third thing that happened. Micro-
soft created something called .NET Core that runs not
only on Windows, but on Macs and Linux and a host
of other platforms including Internet of Things (IOT)
devices, tablets, and phones. Given the choice between
writing C# programs that only run on Windows comput-
ers or writing the same program that can run on Win-
dows, Linux, Mac, or a Raspberry Pi, why would I choose
to only run on Windows? ASP.NET Core is new and just
hit v1.1. It’s not as complete or robust as the full .NET
stack. You can’t program desktop UIs in it (at least not
yet). Although you can build some basic websites with
.NET Core, it’s not nearly as powerful as its big brother,
but the services portion is looking good and that’s one
place .NET Core shines. Services in .NET Core are almost
identical to services in ASP.NET Web API. In fact, I’ve
copied and pasted quite a lot of my existing Web API
code into .NET Core services and had it work perfectly
on the first try.

If I can run my services on the smaller, faster, cheaper
Linux containers and not only make my way into that
large, untapped market but also offer those benefits to
my existing clients at no extra cost to me, why wouldn’t
I embrace it? I can always run the very same code in
Windows containers or on Windows proper if my client
prefers it.

Create a .NET Core App
How can you get all this goodness too? First, you have
to have either Windows 10 Professional or Enterprise,
or Windows Server 2016 Essentials, Standard, or Data
Center. And you have to be running a 64-bit OS. Go to
https://www.docker.com/products/docker#/windows
and download the appropriate Docker for Windows for
your OS. The installation is simple and you can easily ac-

Mike Yeager
www.internet.com

Mike is the CEO of EPS’s Houston
office and a skilled .NET devel-
oper. Mike excels at evaluating
business requirements and
turning them into results from
development teams. He’s been
the Project Lead on many
projects at EPS and promotes
the use of modern best
practices, such as the Agile
development paradigm, use of
design patterns, and test-drive
and test-first development.
Before coming to EPS, Mike was
a business owner developing a
high-profile software business
in the leisure industry. He grew
the business from two employees
to over 30 before selling
the company and looking for
new challenges. Implementation
experience includes .NET, SQL
Server, Windows Azure, Micro-
soft Surface, and Visual FoxPro.

67Title articlecodemag.com

68 codemag.comAzure Skyline: Building and Deploying Services to Azure with .NET Core and Docker

Next, choose the Web API template, set it to No Authenti-
cation, and check the Enable Container (Docker) Support
checkbox, as shown in Figure 2.

Open the Output window and pin it open. Also, make sure
you have an Internet connection. Notice that the Run
button says Docker. Press it to begin the build and run
process. The build is going to be a bit unusual and you’ll
notice that it can take a long time the very first time you
build. By choosing to Enable Container (Docker) support,
you asked Visual Studio to create a container image for
you and to run and debug the code inside the container.
You’ll see the Docker command lines being run in the
Output window. If the build fails, check your Docker Set-
tings and make sure that the drive you’re using for your
source code is shared.

After compiling the code and setting up an internal net-
work for the computer and the containers to communi-
cate, you’ll see a line that looks something like this: Step
1: FROM microsoft/aspnetcore:1.0.1. Docker downloads
a Linux image with everything required to run ASP.NET
Core already installed. Next, it adds an image in which to
install your app. Containers are “composed” by layering
one image on top of another to get all of the functional-
ity you need. By maintaining the original ASP.NET Core

cept all the defaults. Next, you’re going to want Visual
Studio 2017. As I write this, it’s in Release Candidate (RC)
status. When you install, make sure to check the NET
Core and Docker component. Of course, you don’t need
Visual Studio 2017 to build .NET Core apps; you can do
that with Notepad and the .NET Core SDK, but we’re not
savages! We’re used to good tools. This is all you need to
build a service and run it in a Linux container.

Under Visual Studio’s File menu, choose New Project. Un-
der the Visual C# Templates, Choose ASP.NET Core Web Ap-
plication (.NET Core). (You can see this in Figure 1.) Notice
that Visual Studio doesn’t allow you to set the framework
version here (yet). It’s very important in this version that
you create the solution on your OS drive (normally C:\).
Otherwise, you may run into a bug after installing Entity
Framework Core NuGet packages where the project file no
longer loads. If you install on a different drive and run into
this bug, try moving the project onto your OS drive.

Figure 1: Create a .NET Core REST services project

We’re not savages!
We’re used to good tools.

69codemag.com Azure Skyline: Building and Deploying Services to Azure with .NET Core and Docker

1. Microsoft.EntityFrameworkCore
2. Microsoft.EntityFrameworkCore.SqlServer
3. Microsoft.EntityFrameworkCore.SqlServer.Design
4. Microsoft.EntityFrameworkCore.Tools

For the last one, you may have to check the Include Pre-
releases checkbox on the search screen. As I’m writing
this article, there’s still not a released version of this
package. This package adds some development-time ca-
pabilities to the NuGet Package Manager Console, includ-
ing the ability to generate Code First EF classes from your
existing database. Yes, Code First migrations also work
if you prefer that approach, but both features are still in
preview. You can find more information about the tools
at http://docs.microsoft.com/en-us/ef/core/miscella-
neous/cli/powershell.

Under the Tools menu in Visual Studio, select NuGet
Package Manager, Package Manager Console. Type in
the following command at the prompt (substituting the
name of your server, database and login credentials as
necessary).

scaffold-dbcontext "Server=mycomputer;
Database=AzureDockerServices; User Id=devuser;
Password=P@ssw0rd"
Microsoft.EntityFrameworkCore.SqlServer
–OutputDir EFModels

This command adds a folder named EFModels to your
project and then generates a context class and a class
for each table in that folder. EF Core is very much a
V1 product. It’s not nearly as complete and robust as
its predecessors, however all of the basics are there to
make most common tasks possible and future versions
promise to be better than the EF we use today. If you
need more complex interactions, .NET Core has many
database connectors, including one for SQL Server that
you can use to perform any activity still out of the reach
of EF Core.

image without modification, Docker won’t have to down-
load that container again the next time you build any
project based on that image.

The very first build may take several minutes. Be pa-
tient. Eventually, you’ll get a browser showing some
JSON, the same output as the project template for ASP.
NET Web API project. Leave the app running, open the
Values controller in the Solution Explorer and put a
breakpoint inside the initial Get() method, and then
refresh your browser. Congratulations! You’re debug-
ging an application that’s running on Linux in a Docker
container.

Next, you’ll upgrade from .NET Core 1.0.1 to the latest
version (currently 1.1.0). The process is still a bit messy,
but will probably improve before VS 2017 is in RTM. A lot
of the work you’ll want to do requires the latest versions,
so it’s worth the time to learn how to upgrade. Right-
click on the project file and choose Manage NuGet Pack-
ages. Select the Updates tab and update all of the pack-
ages. You may have to do more than one round of updates
to get them all updated. Right-click on the project again,
choose Properties to open the project properties page
and change the Core framework version from 1.0 to 1.1.
Finally, open Dockerfile (no extension) in the Solution
Items folder for editing. The top line says FROM micro-
soft/aspnetcore:1.0.1. This is the base image that Docker
downloads to create your container (before your app is
layered on). You can find information about the latest
containers posted by Microsoft at https://hub.docker.
com/r/microsoft/aspnetcore. Edit the line to read: FROM
microsoft/aspnetcore:1.1.0. That’s the latest version as
I write this. Rebuild as a .NET Core 1.1 app running on a
Linux image with .NET Core 1.1 pre-installed.

Create a Database
This article isn’t about how to create databases or write
Web API services, but let’s do something a little more
interesting than return some static text. Create a new
SQL Server database (use SQL Server 2016 if you plan to
move this to Azure), name it as you like, and then run
the script included with the download for this article or
manually create a new table with the columns and then
add a few rows of test data, as in Table 1.

Because you’ll be hitting the database from Linux, you
won’t be able to use a trusted connection (Windows cre-
dentials) to connect to the database, so you’ll create a
login and user named devuser with password P@ssw0rd
(or choose your own user name and password, but re-
member that if you push the database up to Azure later in
this article, the password will have to meet Azure’s strict
password requirements) and give that user permission
to read and write all tables. If you haven’t downloaded
the script, you’ll need to add these manually using SSMS.
Test that you can log in as devuser and read and write
the Person table. This is important, because if you can’t
connect with SSMS, your service won’t be able to connect
either.

Install Entity Framework Core
Next, you’ll use Entity Framework Core (EF Core) to talk
to the database. Back in Visual Studio, right-click on the
project and select Manage NuGet Packages. Choose the
Browse tab and search for and install the following:

Table 1: The test data

Id UNIUQEIDENTIFIER NOT NULL DEFAULT: newid()
FirstName NVARCHAR(50) NOT NULL DEFAULT: ‘’

LastName NVARCHAR(50) NOT NULL DEFAULT: ‘’

oEmail NVARCHAR(100) NOT NULL DEFAULT: ‘’

Phone NVARCHAR(50) NOT NULL DEFAULT: ‘’

Figure 2: Enable Docker container support

70 codemag.comAzure Skyline: Building and Deploying Services to Azure with .NET Core and Docker

your method in the person controller and returns all re-
cords where the first name, last name, email, or phone
number starts with the letter m. If you run into a SQL
error, edit AzuredickerServicesContext.cs and try us-
ing your IP address instead of your computer name. The
Linux computer running in Docker may not be able to do
a DNS lookup on your computer name if you’re not con-
nected to a network. I’ve run into this a few times while
travelling with my laptop. I found that 127.0.0.1 doesn’t
work either. Run ipconfig at a command prompt and use
the IP4 address listed there. You might have noticed that
the code you wrote would work equally well in a standard
ASP.NET MVC project.

Push the Database to Azure
Now that you have a working service on your dev com-
puters, let’s deploy the whole thing to Azure. Start by
deploying the SQL Database. I’m assuming that you have
an Azure account. If not, you can create a free trial ac-
count and use that for testing. Use the Azure portal to
create a Create a SQL Server if you don’t have a server set
up already. Make sure that you can connect to the server
in Azure with SSMS. Add the devuser login to the server
so that when you push the database up to Azure, you’ll
be able to push the devuser user as part of the database.

Open SSMS 2016 login to your local database making
sure you’re logged in as an admin and not as devuser.

Create a Web API Service
Right-click on the Controllers folder, select Add, New
Item. Under ASP.NET Core, Web, ASP.NET choose Web API
Controller Class and name it PersonController.cs. You
won’t be using the sample methods, so delete them to
prevent a conflict. Paste the following method into the
class.

[Route("{searchText}")]
[HttpGet]
public List<Person> SearchPeople(string searchText)
{
 using (var context = new
AzureDockerServicesContext())
 {
 var people = context.Person
 .Where(p => p.FirstName.StartsWith(searchText)
 || p.LastName.StartsWith(searchText)
 || p.Email.StartsWith(searchText)
 || p.Phone.StartsWith(searchText))
 .ToList();

 return people;
 }
}

Run the app again. When the browser appears, replace
/api/values in the URL with /api/person/m. This calls

Figure 3: Edit DockerFile to use the aspnetcore:1.1.0 image.

· Get thousands of cliparts free of charge!

· Get clipart in XAML Canvas and XAML Brush formats

· Use live tools to manipulate cliparts

· Styles, skins, templates, and shaders coming soon!

· SVG, JPG, PNG, BMP, GIF, and other formats
are also available!

Get oodles of free XAML clipart!

www.Xamalot.com

72 codemag.comAzure Skyline: Building and Deploying Services to Azure with .NET Core and Docker

Publish Activity window, however. If you can’t find it, log
into your Azure portal, open up Web Apps, find your new
app, and use the link on the overview page. Initially, you
get a 404 error. Don’t forget that you have to add /api/
person/m to the end of the URL to hit the service.

Summary
Well done! You created a Linux app that hits SQL Server
and ran it not only in your desktop environment but also
in the cloud. You’re now a certified services developer
for Docker.

Services are the first things you expect to see built with
.NET Core. Even though it’s a brand new product and
will grow more powerful with each new version, there’s
already enough in this portion of .NET Core to make it
worth giving a serious look. Websites and other types of
projects are sure to follow, but they’re not as far along as
services. Because .NET Core can run on a variety of plat-
forms, it makes sense to take a serious look at Linux. And
because Docker now runs on Windows, it makes sense to
take a serious look at Docker. These are hot job skills and
they’re getting a lot of press for good reason. As I re-
view this before sending it off to my editor, a pop-up just
notified me that a new version of Docker has just been
released, version 1.13, the one with support for Windows
containers is now in RTM. That’s an article for another
day. It’s a fast-paced world and moving faster all the
time, but it’s not a big stretch for a C# developer to hop
on and see what all the fuss is about.

Right-click on the AzureDockerServices database. Choose
Tasks, Deploy Database to Microsoft Azure SQL Data-
base. Log into your server in Azure. You can accept the
defaults to keep the database name and the Basic edi-
tion, which has a 2GB size limit. Cost for this database
is about $5/month if you keep it for the whole month.
Finish the wizard to push your database up to Azure. Us-
ing SSMS, log in to the Azure server as devuser, and make
sure that you can read and write the person table.

Open AzuredockerCoreServicesContext.cs in the EFModels
folder and change the name of the server to point to the
database in Azure. Test the service to ensure that it’s still
working properly.

Push the Container to Azure
The final step is to publish the Docker container with your
services app to Azure. For now, you’re just going to pub-
lish a single copy of the Linux container. If it works there,
the same container can be deployed with Docker Swarm
or some other container orchestration product for more
advanced deployment and scalability scenarios.

Right-click on the project and choose Publish. On the
Publish tab, click Create to create a new deployment pro-
file. Choose Azure App Service Linux (Preview). Change
the Web App Name if you like, choose the Azure subscrip-
tion you want to use, and create a new Resource Group. I
named mine Docker-WestUS-ResourceGroup so I can eas-
ily tell which data center region I’m using. Create a new
App Service Plan. I named mine Docker-WestUS-Plan.
Next, create a new Container Registry. I named mine
DockerWestUSRegistry. Container Registry names can-
not contain dashes and the error message is misleading.
Note that currently only West Europe, Southeast Asia,
and WestUS regions offer Linux App Services. Your Re-
source Group, App Service Plan, and Container Registry
must all be in the same Azure region. Don’t use an exist-
ing Resource Group unless you know for sure it’s in the
same region as the plan and registry.

Once you publish, the app builds and deploys. The de-
ployment in the Output window happens pretty quickly,
and then a command window opens and you’ll see your
image being pushed up to Azure. In Docker lingo, an im-
age is a file and a container is a running instance of that
file. Images are stored in repositories. When you want
create a new container, you make an image and deploy a
copy of the image to a repository. When you want to spin
up a new container, you get a copy of the image from the
repository and start it up on some hardware.

Unlike deploying an ASP.NET MVC and/or Web API project,
publishing doesn’t automatically start up a browser for
you to go try it out. A link to the URL shows up in the Web

Unlike deploying an
ASP.NET MVC and/or Web
API project, publishing
doesn’t automatically start
up a browser for you
to go try it out.

SPONSORED SIDEBAR:

Convert with CODE

Remember when floppy disks
stored a world of information?
Remember when Visual
FoxPro provided endless
programming possibilities?
Unfortunately, all good
things come to an end, and
Microsoft no longer supports
Visual FoxPro. Don’t let your
application become obsolete.
Let CODE’s migration
specialists bring life back to
your Visual FoxPro program!

To schedule your free
consultation or to request our
free PJX Analyzer tool, contact
us at info@vfpconversion.com
or call 832-717-4445 ext. 013

 Mike Yeager

73codemag.com Managed Coder

Mar/Apr 2017
Volume 18 Issue 2

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Writers In This Issue
Mohammad Azam Jason Bender
Sahil Malik Ted Neward
Jeffrey Palermo John V. Petersen
Rachel Reese Paul D. Sheriff
Chris Williams Mike Yeager

Technical Reviewers
Markus Egger
Rod Paddock

Art & Layout
King Laurin GmbH
info@raffeiner.bz.it

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 026
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
International Bonded Couriers (IBC)
Newsstand: Ingram Periodicals, Inc.
 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
832-717-4445 ext 028
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $44.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions. Back
issues are available. For subscription information, email
subscriptions@codemag.com
or contact customer service at
832-717-4445 ext 028.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 300, Spring, Texas 77379
Phone: 832-717-4445
Fax: 832-717-4460

CODE COMPILERS

 Ted Neward

(Continued from 74)

(For the record, it was the most gold-plated
About box you’ve ever seen. Scrolling text, a vid-
eo Easter egg—you name it, our About box had
it. It was a virtual monument to one man’s ability
to put every possible C++/Windows thing into a
single, solitary dialog box of no real importance.
It was, by far, the single most impressive thing in
our application that nobody ever looked at.)

It’s nice that Mike could code, but we didn’t need
him to be the technical expert on the team. We
had a Technical Lead, and he made pretty good
decisions. Mike was, to be sure, thoroughly pro-
ficient in C++ and Windows, but the truth is that
the rest of the team was (probably) leaving him
behind in raw technical knowledge, particularly
as time went by and we learned more on a day-
to-day basis that he didn’t get the chance to.
The truth was that we didn’t need him to be the
technical lead. We needed him to be our manag-
er, making sure our desktops were working, the
team room was ours (which it wasn’t when I first
started), and so on.

The more hours that a manager is spending
heads-down in the IDE, the less that manager is
available to resolve conflicts, make decisions, or
erase obstacles that only somebody higher up the
food chain can. Like the time the VP of Operations
thought an internal outage was due to something
somebody on our team had done—Mike went to
bat for us, insisting that nothing we were doing
would’ve caused the outage (which was true).
Eventually it was “discovered” that the fault had
originated from within the Operations group.
(And the VP’s voice, screaming at the top of his
lungs at his Operations team for their mistake,
could be heard throughout almost the entire
building—which reminds me, never ever be that
kind of manager.)

Look at it this way: if a manager is working an
hour on code, it’s one man-hour of code con-
tributed to the project. But if the manager can
unblock the team from an obstacle, it’s a half-
dozen or more man-hours of (perhaps more pro-
ductive) development time that’s now added. The
manager becomes, as the military calls it, a force
multiplier; their actions essentially multiply the
effectiveness of the rest of the group, carrying
far greater weight than their actions alone ever
could.

And hey, if the net effect is to make the team
better, does it really matter all that much if you’re
the one writing the code?

Summary
It’s helpful, certainly, for managers to know how
to code—having the ability to understand the
issues that your team faces, and being able to
weigh in with suggestions or ideas, even if they
are more vague or abstract than concrete and

specific, is a valuable thing. But a manager has to
recognize that this is not their principal contribu-
tion to the team; they have a different title for a
reason. Despite how the manager may feel, theirs
is the role of facilitator and, sometimes, coach.

Which means it’s maybe OK for managers to code
the About box, even if it’s one of those gold-plat-
ed Cadillac Escalade versions of an About box.
But I wouldn’t feel comfortable with them doing
much more than that; they’ve got much better
things to do.

codemag.com

“they’re all bespectacled nerds” brush. Or the
“400-pound hacker sleeping in his parents’ base-
ment,” as a particular political candidate put it.

Famed ScrumMaster Trainer, and Planning Poker
aficionado Mike Cohn was, to my great delight,
one of my first managers when I began program-
ming. (Ask him sometime if you see him at a
conference—he’s got some stories). He once de-
scribed his job as “being the umbrella over the
development team, to keep all the management
off of them so they could actually get work done.”
And, largely, that’s what he did, and we were able
to get some stuff done.

What Managers Don’t Need to Do
Code.

Seriously. They don’t need to be coding. It’s nice
that they can, of course, because certain situa-
tions call for a degree of technical expertise as
part of the decision-making process. And some
choose to do so because they came from these
same roots that you and I do, and see coding as
an enjoyable activity to which they can return at
times, like salmon returning to their spawning
pool periodically to perpetuate the species (or, in
this case, to recharge their batteries so they can
go out and fight the managerial battles).

As a matter of fact, I’ll never forget one day when
Mike came into our team room and asked a bud-
dy of mine if he was the one to fix bug #453.
My buddy and I looked at each other, then both
dived into the bug-tracking system to figure out
which bug #453 was. Turned out, it was a bug
in the About box (this was back in the mid-90s
and we were working on a desktop system. Don’t
judge), and Ron had, in fact, fixed it. In a very
soft voice, Mike said, “I need you to back that fix
out.” Now thoroughly confused, Ron and I just
looked at each other until Mike explained further.
“I spend close to forty hours a week slogging
through management meetings and reports so
you guys don’t have to, and every Friday, after
lunch, I close the door to my office and work on
the code. The About box is the only thing I’ll let
myself work on, and I’ll be damned if I let you
guys take that away from me!”

weeks I’ve been on the receiving end of this
question. It usually comes from somebody who’s
known me (or known of me) and they find out
that my current role is as Director of Developer
Relations for a hockey-stick-scaling startup called
Smartsheet (http://www.smartsheet.com –check
‘em out, get a developer license, and make my
CEO happy!). I got the same question several
times in the prior two years too, when I was the
CTO of the consulting company startup. There’s
this unwritten rule, somehow, that if “manager”
or “director” or “VP” appears anywhere in your
title, you’ve clearly stepped over that “not a
coder” line.

And, strangely, I find myself growing a touch de-
fensive about the question, like somehow it’s an
admission of failure or something, instead of the
natural progression of the developer to senior de-
veloper to architect or team lead to…

Management.

It’s a subject that’s on my mind, too, because
Smartsheet is conducting its annual employee
review process, and one of the questions asked
is, “Is your manager technically skilled enough
to support you in your position?” At Smartsheet,
almost anyone in any management capacity is
expected to be hands-on coding at least some
non-trivial percentage of the time, and, not sur-
prisingly, almost all of them do.

And yet…should they? Should they have to?
Should they want to?

What Managers Do
It’s not an uncommon question: What, exactly,
do managers do for us? Certainly, recent indus-
try experiments would seem to suggest that a
manager-free lifestyle is not a terrible thing to
live. After all, with no managers, there’s no sta-
tus reports, and no meetings to go to, and no
“Yeahhhhhh…if you could have those TPS reports
by Friday, that’d be great” that developers need
to deal with.

But, like the myth of the open office plan, the
myth of the manager-free lifestyle is slowly erod-
ing. Google, in particular, is discovering that a
workplace where developers simply roam where

they will can yield some impressive experiments
and projects, but doesn’t always yield what the
customer (or the project manager, or upper
management, or…) asked for. Part of that is
because the developer doesn’t have easy access
to the people asking for the project in the first
place—the customers are on a different floor, dif-
ferent building, different company, or different
continent, and as a result, the developer ends up
building what the developer thinks the customer
asked for, rather than what the customer actually
asked for.

And, worse, sometimes the developers know that
they don’t know what the customer wants, but
without a manager, they have limited-to-no abil-
ity to navigate across the org chart to find out.
This leaves them with the only real option left to
them at that point: guessing.

This, in part, is what managers are supposed to
do: When an issue or obstacle arises that keeps
people from getting their jobs done, it’s the
manager’s responsibility to make that obstacle
or issue go away. Sometimes those obstacles
are internal in nature, such as a logjam among
the developers around what language to use or
framework to adopt or methodology to use or
some other technical decision needs to be made
and the team is stuck. Sometimes those obstacles
are external in nature, such as getting those-
who-are-asking-for-the-software to sit in a room
with those-who-are-building-the-software so
they can build the software to do what it actu-
ally needs to do. And sometimes the obstacles
are physical in nature, such as when a developer
needs a 34” monitor to…er… um…well, I’m sure
there’s some kind of good reason that a devel-
oper needs a monitor that big. Or to manage the
physical grow-out of the company so that devel-
opers aren’t crammed four-to-an-office. Or any of
a thousand other things that, when not properly
handled, send developers’ productivity plummet-
ing.

This isn’t to argue that all managers are good
managers. Every developer knows, through our
collective unconscious, of managers who put up
more obstacles than they eliminate. But to paint
all managers with that brush is to commit the
same sin that managers do when they paint all
developers with the “prima donna” brush. Or the

On Coding Management
For an industry that prides itself on its analytical ability and abstract mental processing, we often
don’t do a great job applying that mental skill to the most important element of the programmer’s
tool chest—that is, ourselves. “So you’ve stopped coding, then?” Several times over the last few

(Continued on page 73)

Managed Coder74

MANAGED CODER

Tower 48 is the most advanced and affordable digital escrow solution available. Designed and built specifically for software and other
digital assets, Tower 48 makes escrow inexpensive and hassle free. Better yet, as a vendor, you can turn escrow into a service you offer to
your customers and create a new revenue stream for yourself.
Regardless of whether you are a vendor who wants to offer this service to their customers, or whether you are a customer looking for extra
protection, visit our web site to start a free and hassle-free trial account or to learn more about our services and digital escrow in general!

Visit www.Tower48.com for more information!

Affordable High-Tech
Digital Escrow

Less than

$1
per day!

VENDORS: ADD A REVENUE STREAM BY OFFERING ESCROW TO YOUR CUSTOMERS!

